Comparteix:

Lectura de Tesi Doctoral Óscar Luís Antepara Zambrano

Títol: Adaptive mesh refinement method for CFD applications

Quan?

10/01/2019 de 09:30 a 11:30 (Europe/Madrid / UTC100)

On?

Sala de conferències del TR5

Afegiu l'esdeveniment al calendari

iCal

Avís lectura tesi doctoral


Doctorand: ÓSCAR LUIS ANTEPARA ZAMBRANO
Títol: Adaptive mesh refinement method for CFD applications
Directors: Asensio Oliva Llena - Guillem Colomer Rey - Néstor Vinicio Balcázar Arciniega
Data lectura: 10  gener 2019  Hora: 9:30
Lloc: Sala de conferències del TR5 - Campus TERRASSA

RESUM

El objetivo principal de esta tesis es el desarrollo de un algoritmo adaptativo de refinamiento de malla (AMR) para simulaciones de dinámica de fluidos computacional utilizando mallas hexaédricas y tetraédricas. Esta metodología numérica se aplica en el contexto de simulaciones Large-eddie (LES) de flujos turbulentos y simulaciones numéricas directas (DNS) de flujos interfaciales, para traer nuevas investigaciones numéricas y entendimiento físicas. 
Para las simulaciones de dinámica de fluidos, se presentan las ecuaciones governantes, la discretización espacial en mallas no estructuradas y los esquemas numéricos para resolver las ecuaciones de Navier-Stokes. Las ecuaciones siguen una discretización conservativa por volumenes finitos en mallas colocadas. Para la formulación de flujos turbulentos, la discretización espacial preserva las propiedades de simetría de los operadores diferenciales continuos y la integración de tiempo sigue una estrategia autoadaptativa, que ha sido bien probada en mallas no estructuradas. Además, para las aplicaciones que se muestran en esta tesis, se utiliza el modelo LES que consiste en una viscosidad local que se adapta a la pared dentro de una formulación multiescala variable. Para la formulación de flujo de dos fases, se aplica un método de conjunto de niveles conservador para capturar la interfaz entre dos fluidos y se implementa con un esquema de proyección de densidad variable para simular flujos de dos fases incompresibles en mallas no estructuradas. 
El algoritmo AMR desarrollado en esta tesis se basa en una estructura de datos de quad / octree y mantiene una relación de 1: 2 entre los niveles de refinamiento. En el caso de las mallas tetraédricas, se sigue un criterio geométrico para mantener la calidad de la malla en una base razonable. La estrategia de paralelización consiste principalmente en la creación de elementos de malla en cada subdominio y establece un número de identificación global único, para evitar elementos duplicados. El equilibrio de carga está asegurado en cada iteración de AMR para mantener el rendimiento paralelo del código CFD. Además, se ha desarrollado un algoritmo de multiplicación de malla (MM) para crear mallas grandes, con diferentes tipos de elementos de malla, pero preservando la topología de una malla original más pequeña.
Esta tesis se centra en el estudio de flujos turbulentos y flujos de dos fases utilizando un marco AMR. Los casos estudiados para aplicaciones de LES de flujos turbulentos son el flujo alrededor de uno y dos cilindros separados de sección cuadrada, y el flujo alrededor de un modelo de automóvil simplificado. En este contexto, se desarrolla un criterio de refinamiento basado en la física, que consiste en la velocidad residual calculada a partir de una descomposición de escala múltiple de la velocidad instantánea. Este criterio garantiza la adaptación de la malla siguiendo las estructuras vorticales principales y proporcionando una resolución de malla suficiente en las zonas de interés, es decir, separación de flujo, estelas turbulentas y desprendimiento de vórtices.
Los casos estudiados para los flujos de dos fases son el DNS de la burbuja impulsada por la gravedad en 2D y 3D, con un enfoque particular en el régimen de oscilación. Además, el uso de AMR tetraédrico se aplica para la simulación numérica de burbujas impulsadas por la gravedad en dominios complejos. En este tema, la metodología se valida en burbujas que ascienden en canales cilíndricos con topología diferente, donde el estudio de estos casos contribuyó a tener una nueva investigación numérica y una visión física en el desarrollo de una burbuja con efectos de pared.