Ofertes treballs fi d'estudishttps://eseiaat.upc.edu/ca/curs-actual/treballs-fi-estudis/ofertes-treballs-fi-destudishttps://eseiaat.upc.edu/++resource++plone-logo.svg
2010 - GRAU EN ENGINYERIA EN TECNOLOGIES AEROESPACIALS
2010 - GRAU EN ENGINYERIA EN VEHICLES AEROESPACIALS
Identificador de l'oferta:
205-06399
Modalitat:
Universitat
Possibilitat de beca/finançament:
No
Idioma d'elaboració del treball:
Anglès
Descripció:
This thesis focuses on the modeling, analysis, and optimization of composite shell structures applied to aircraft wing design. The work involves developing accurate numerical models for layered composite shells, evaluating structural performance under static and dynamic load conditions, and applying optimization techniques to enhance stiffness, strength, or weight efficiency. The study also incorporates advanced numerical methods to efficiently solve the large-scale systems that arise from composite wing simulations.
Objectius:
1. Develop numerical models for composite shell structures suitable for wing applications; 2. Analyze the structural response of composite wings under static and dynamic loading; 3. Formulate optimization problems to improve structural performance, such as weight minimization or stiffness maximization; 4. Implement efficient numerical methods to solve large finite element systems arising from composite shell analysis; 5. Compare different modeling and optimization strategies to assess accuracy, robustness, and computational cost.
Tasques a realitzar / Característiques:
1. Literature Review: Investigate composite shell theory, wing structural analysis, optimization methods, and relevant numerical techniques; 2. Structural Modeling: Implement or adapt shell formulations for layered composite wings; 3. Load Cases: Set up static loads (bending, torsion) and dynamic scenarios (gust loads, vibration modes); 4. Optimization Framework: Apply topology, shape, or parameter optimization to improve the performance of composite wings; 5. Numerical Methods: Use and evaluate iterative solvers or basic preconditioners to improve computational efficiency when necessary; 6. Benchmarking: Test and compare different models and optimization strategies on representative wing configurations; 7. Thesis Writing: Document the methodology, numerical experiments, results, and final conclusions.
Comparteix: