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The report in PDF alongside the code files used to solve the problem must be submitted to Atenea 
before 17/11/2020 23:59 in a single compressed ZIP file. 

Notes: 

• Use lumped panel elements to discretize the plate. 
• It can be assumed that all the angles are small and that the panel’s section satisfies the 

requirements for thin airfoil theory to be applied. 
• Make sure your code files are well commented (i.e. insert comments to make clear what you 

are trying to do). 
• Make sure all the requested results can be clearly identified in your report. 
• Add a detailed and comprehensive description of how you have proceeded to solve the 

problem. Do not repeat procedures already done in the lectures. However, if you use some of 
these procedures to obtain some result, you should indicate so and refer to the section from 
where they come from (e.g. “The procedure … from page(s) … in the lecture notes … has been 
used to obtain …” or “Result … from problem … is used here to …”). Also, the report should 
never contain descriptions of the code (these should be either included as comments in the 
code itself or, if required, as an appendix to the report). Any additional development or 
deviation must be explained. 

• Private e-mails regarding the assignment will not be answered. If you have any questions you 
must post them publicly in the course’s forum in Atenea. In any case, I will not answer 
questions regarding theory or methodology to solve the problem. 

• (Optional) You can add a section at the end of the report giving your personal thoughts on 
the first part of the subject. You can answer questions like: 

o How do you feel about the workload that this subject has required from you with 
respect to the other subjects? 

o Do you think the balance between theory and problems is OK? 
o What are your thoughts regarding the scope of the theory? Should it be extended to 

explore more topics in detail? Is it too condensed? Have you found it too easy/basic? 
o … 
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Advanced aeroelasticity

1 Problem specification

The goal of this assignment is to discuss the reversal conditions and divergence of the wing

shown in Figure 2. It can be considered as a flat plate on a wind tunnel clamped on one side

and free on the other at flight conditions. The plate has a rigidly attached control surface,

the position and size of which are determined by the parameters ν and b. For calculus

purposes the flight the density chosen for a typical flight level is ρ = 0.345331kg/m3.

Figure 1: Wing

The wing has the following dimensions:

• AR = 6.

• c = 400mm.

• GJ = 38KNm2

• the elastic axis is located at 0.35c.

From these values and knowing that AR = b2/(c · b) it is obtained that the total span

b = 2400mm.

2 Divergence speed of the plate

From the structural point of view, our goal is to find the elastic twist angle, θ. When

the elastic twist tends to infinite the divergence condition will be found, to do so, the

lumped panel elements method has been used. The first step is to discretize the wing, the

discretization is the same as it has been done in Problem 3.

2
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Advanced aeroelasticity

Figure 2: Wing discretization

Doing equilibrium of moments and using the procedure from pages 3 to 4 from problem

4 the next expressions can be found. It is important to notice that the lift is not constant

and therefore we have two expressions of lift that can be expressed in the same line.

L(i) = q∞ ·
cb

n
· (CLα(α0 + θ(i)) + CLδ · δ · φ(i)) (1)

Where,

φ(i) =

 1 if 0 6 i 6 ηN

0 if ηN 6 i 6 N
(2)

Introducing this into the equilibrium expression we can obtain the same expression as in

Problem 3 page 5. As the term that depends on the deflection angle doesn’t multiply the

twist angle or structural stiffness the Q term becomes:

Q = q∞
cbe

n
α0CLα + q∞

cbe

n
CLδδ + q∞

c2b

n
Cmacδδ (3)

And the general equation can be written as:

([Ks]− q̂[Ka]){θ} = {Q} (4)

As the divergence condition det(K(q̂)) = 0 doesn’t depend on the Q matrix the divergence

condition is the same as for a wing with no control surface.

qD = π2

4b2
GJ

ceCl,α
= 1

2ρV
2
D (5)

3
8



Advanced aeroelasticity

Where VD is the divergence speed of the plate. Isolating we can get:

VD =
√

2
ρ
qD = 551.4 m/s (6)

3 Modes of the elastic twist

Finding the eigenvalues of equation 4 by doing the same procedure as in Problem 3 we

can plot the results. Figure 3 shows the modes of the elastic twist, the X-axis shows the

dimensionalized y position corresponding to the collocation points, the Y-axis represents

the eigenvectors stored in the matrix. The Matlab code used is the same as the one used

in class. As was expected, the results have a sinus and cosine behavior according to the

analytical solution.

Figure 3: Wing discretisation

Each Eigenvector has an associated divergence speed.

• Mode 1: this is the lowest positive eigenvalue which is equal to 1, the associated

divergence speed is the one obtained in the previous section which is 551.4 m/s.

• Mode 2: Eigenvalue = 9, qD = 9 · q̂ −→ VD = 1.55e3

• Mode 3: Eigenvalue = 25, qD = 25 · q̂ −→ VD = 2.56e3

4
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Advanced aeroelasticity

• Mode 4: Eigenvalue = 49, qD = 49 · q̂ −→ VD = 3.61e3

• Mode 5: Eigenvalue = 84, qD = 84 · q̂ −→ VD = 4.63e3

4 Control surface reversal conditions

The control reversal gives the name to a situation in which an increase in the control

surface’s deflection angle δ causes the lift to decrease. Mathematically can be formulated

as:
∂L

∂δ
= 0 (7)

Reminding the obtained equation of the lift (equation 1) the partial derivative can be

done:
∂L

∂δ
= 0 = q∞ ·

cb

n
·
(
CLα

∂

∂δ
{θ}+ CLδ · ·φ(i)

)
(8)

Here we have all the values except the elastic twist matrix which has to be derivated.

The elastic, twist similarly as the previous section, can be obtained isolating it from the

equation of equilibrium (equation 4).

{θ} = {Q}([Ks]− q[Ka])−1 (9)

Then,
∂

∂δ
{θ} = ∂

∂δ
{Q}([Ks]− q[Ka])−1 (10)

Where,
∂

∂δ
{Q} = q∞

cbe

n
CLδ + q∞

c2b

n
Cmacδ = q∞

cb

n
(CLδe+ Cmacδc) (11)

Introducing equation 11 into equation 10 and introducing it into equation 8 we can obtain

the following expression:

∂L

∂δ
= q∞ ·

cb

n

(
CLαq∞

cb

n
(CLδe+ Cmacδc) · ([Ks]− q[Ka])−1 + CLδ · ·φ(i)

)
= 0 (12)

This equation is the beginning of a Matlab problem which I tried to solve but I couldn’t do

it. Form that equation and isolating qR/qD the control reversal function can be obtained,

therefore, the velocities as a function of η.

5
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Advanced aeroelasticity

5 Discussion

Control reversal can be avoided with high values of η, that’d mean reducing the control

reversal surface. The same happens with the β values, closer to 1 the chances of having

control reversal would be minimum. As a result, the negative pitching moment produced

by the control surface would be reduced.

Finally comment that when we have UR/UD < 0.5 the deflection of the control surface

will result in a decrease of the lift, which is the opposite of what we expect.

6 Personal thoughts

From my point of view, I think that all the workload, theory classes, and problems are well

balanced. The best of having meet lessons is the support of the whiteboard, I think it’s

very useful to solve the problems and helps a lot. Theory classes are maybe too dense and

the 3 hours are maybe too long and since there are so many equations in the slides you

can be easily get lost. Regarding the problems solved in the class were very useful in order

to understand the theory despite they can be very long or mathematically complicated.

Regarding this assignment I personally regret choosing the assignment instead of the exam,

it has happened the same as in all the subjects, the demanded level when we do exams

online or project increases a lot. This assignment required mathematical skills with Matlab

that I don’t have and, with no chance of asking to you how to solve an equation, I couldn’t

finish it. Also, I found the mathematical development difficult as, in class, we didn’t see

how to get the reversal conditions of a wing. Doing a presencial exam I think I could have

gotten a better result explaining the theory and solving a similar problem.

6
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clear 
close all 

m = 0:1:10; 

% Initialize variables 

n = zeros(1,length(m)); %Number of elements/PANELS 
e = zeros(1,length(m)); %Error 

for i = 1:length(m) 

%number of panels 
n(i) = 2^m(i); 

%Initialize matrices 
Ks = zeros(n(i),n(i)); 
Ka = eye(n(i),n(i)); %identity matrix 
k = (4*n(i)^2)/(pi^2); %constante 

%Stifness matrix coefficients 
for j=1:n(i) %loop for each pannel 

if (j==1)

Ks(j,j) = k*3; %diagonal 
if(i>1) 

Ks(j,j+1) = -k*1; 
end 

elseif j==n(i)

Ks(j,j) = k; 
Ks(j,j-1) = -k;  

else 

Ks(j,j) = 2*k; 
Ks(j,j-1) = -k; 
Ks(j,j+1) = -k; 

end 

   end 

%Eigenvalues and eigenvalues 
[V,L] = eig(Ka\Ks); 
L = diag(L); 
L = L(L>0); %obtain the indices which value is positive, i 

discard the negative 
qD = min(L); %this is non dimensionalized!!! 

%Error definition 
e(i) = abs(1-qD); 

12



end 

figure 
loglog(n,e); 
grid on 
grid minor 
box on 
xlabel('Number of panels') 
ylabel('Relative error') 

%Defining collocation points to plot eigenvectors  
y = [0,((1:n(end))-1/2)/n(end),1]; %it is non diemsionalized; if we want 

to give it a value 
figure                      %we jut have to multiply by span,b 
hold on 
for i=1:5 

plot(y,[0;V(:,i);V(end,i)]); %Adding the boundary conditions 
%first row twist angle = 0 bcz wing root, at the end 
% V(end,i) bcz last co  

end 

box on 
grid on 
xlabel('y/b') 
ylabel('Eigenvector') 
legend('1','2','3','4','5'); 

%% 

rho = 0.348331; 
CLa= 2*pi; 
GJ = 38000; 
c = 400*10^-3; 
AR = 6; 
b = c*AR; 
e = 0.35*c; 
qD = (pi*pi*GJ)/(4*b*b*c*e*CLa); 

for (i=1:5) 

qDdim = L(i)*qD; 
vel(i) = sqrt(2*qDdim/rho); 

end 

13
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= y −y(i) (i−1)
θ −θ(i) (i−1)

GJ
T (i)

  
 

where: 
 

 = ctK ( T (i) =  T
(i) )θ(i) − θ(i−1)  

 
Therefore: 

 
=  = ctKT

(i) GJ
y −y(i) (i−1)  

 
In this equation, T is identified as internal torque by the relative torsion between two               
panels and theory suggests to keep G and J constant values. From the previous              
expression, the torsional stiffness of spring is also obtained which is . It is           KT

(i)    
important to highlight that is not constant because the distance is not same as    KT

(1)           
, this condition is applied only at the root. Regarding the control points, it isKT

(2:N )                
required to add two extra nodes at root and tip (at the point internal torsional reaction                
is null). 
 
Continuously the equilibrium over the elastic axis in each panel i = {1...n} is applied               
[lecture 3]: 
 

M​ac​
(i)​ +L​(i)​e​(i)​ - K​T​(i)​ (θ​(i)​-θ​(i-1)​ ) - K​T​(i+1)​ (θ​(i)​ - θ​(i+1)​) = 0 

 
according to the theory at i=1, θ ​(0)​ = 0 (fixed root): 

 
M​ac​

(1)​ +L​(1)​e​(1)​ - K​T​(1)​θ​(1)​ - K​T​(2)​ (θ​(1)​ - θ​(2)​) = 0 
 

and for i=n (point at which there is no torsional reaction), T ​(n+1)​ = 0, θ​(n+1)​=θ​(n)​ (free 
tip): 

 
M​ac​

(n)​ +L​(n)​e​(n)​ - K​T​(n)​ (θ​(n)​-θ​(n-1)​ ) = 0 
 

Due to the presence of a control surface, the properties do not remain constant              
along the wing (from root to ηb the properties are constant and from this point to tip                 
they differ, 1-ηb) which leads to two slightly different lift expressions are obtained: 
 

for constant properties M ​ac​
(i)​ = 0 (C​mac​=0): 

 
L​(i) ​ = q​∞ C​L,α​(α​0​ + θ​(i)​)n

cb  
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for non-constant properties, there is no sum up of θ with δ because of a rigid 
structure, not elastic: 

L​(i)​ = q​∞ [C​L,α​(α​0​ + θ​(i)​) + C​L,δ​δ]n
cb  

C​L,α ​= 2π 

 C​L,δ ​ = 6π 1+β−2β2

3+4β(1−β)

Recalling the general equation of moment: 

for constant properties M ​ac​
(i)​ = 0: 

- K​T​(i)​θ​(i-1)​ + (K​T​(i)​+K​T​(i+1)​-q​∞ C​L,α​e​(i)​)θ​(i)​- K​T​(i+1)​θ​(i+1) ​= q​∞ C​L,α​α​0n
cb

n
cb

for non-constant properties: 

M​ac​
(i) ​+ q​∞ C​L,α​e​(i)​ + q​∞ C​L,δ​e​(i)​δ = [-q ​∞ C​L,α​e​(i)​ + K​T​(i)​ + K​T​(i+1)​ ]θ​(i)​ - K​T​(i)​θ​(i+1)​ -n

cb
n
cb

n
cb  

-K​T​(i+1)​θ​(i+1) 

following the procedure of problem 3 [lecture 3], it is proved that: 

q​D​ = = π2

4b2
GJ

ceCL,α

π2

4(c AR)* 2
GJ
ce2π

U​D​ = = 473.5 m/s √ ρ
2qD

b. It is asked to plot the first five modes of the elastic twist associated to their               
corresponding divergence speeds:

In order to obtain the plot of figure 2 the boundary conditions explained            
previously have been set to “V” which stores eigenvectors. In the first row the             
twist angle is zero because it corresponds to the root and at the end an              
additional row is set because of a null torsional reaction which belongs to the             
wing tip.

The divergence speed is obtained computing q​D for the first five cases and            
they are: [ 473.49; 1420.5; 2367.5; 3314.4; 4261.4].
Observing the vector, the divergence speed calculated in the previous section          
can be located at the first position.

17
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Figure 2: Eigenvector of first 5 modes of the elastic twist 

Observing the figure 2 it can be seen that all of them have the same               
amplitude because of the matlab function “eig” that normalizes the values.           
Their shape resembles sinus or cosine and this is expected. 

θ​i​ = c1 sin ​(2i-1) 2
π y

b  

where “i” goes from 1 to 5 in this case and the term in blue marks the periodicity. 

c. U​R​/U ​D ​vs η is requested in this section for 𝛽 = {0.5, 0.6, 0.7, 0.8, 0.9}

The control surface reversal condition is as follows: 

= 0dl
dδ  

L​(i)​ = q​∞ [C​L,α​(α​0​ + θ​(i)​) + C​L,δ​δΦ]n
cb  

if  i ≥ 0 && i ≤ ηN 

Φ = 1 

18
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if η< i ≤ N 

Φ = 0 

deriving the expression of lift: 

 = q​∞ [C​L,α + C​L,δ​Φ] = 0∂δ
∂L

n
cb

∂δ
∂θ(i)

Applying the equilibrium equation: 

([K​s​]- [K​a​]){Q} = {Q}q︿  

{Q} = {Q}([K​a​]- [K​a​])​-1q︿  

= ([K​s​]- [K​a​])​-1∂δ
∂θ(i)

∂δ
∂Q q︿  

where force is: 

Q = q​∞ C​L,α​α​0​ + q​∞ C​L,δ​Φ + q​∞ C​mac,δ​δn
cbe

n
cb

n
cbe  

= q​∞ (C​L,δ​e + c C​mac,δ​δ)∂δ
∂{Q}

n
cb  

= q​∞ (C​L,α​q​∞ (C​L,δ​e + c C​mac,δ​δ)([K ​s​]- [K​a​])​-1​+C​L,δ​Φ) = 0∂δ
∂L

n
cb

n
cb q︿  

q​∞ ​has to be computed in matlab in order to obtain q​R so that U​R​/U​D ​can be                  
computed. 

d. Discussion on the possible sets of values of β and η:

Surface control reversal conditions can be avoided when η is high or β is             
closer to 1, as a result the control reversal surface reduces. According to the             
theory [lecture 2] Control reversal gives name to a situation in which an            
increase on the control surface’s deflection angle, 𝛿, causes the lift to           
decrease therefore for the opposite case, control reversal would decrease.
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C  N ​      ​Msc. in Aeronautical Engineering 
Mid-term Exam Assignment - Advanced Aeroelasticity 

Personal Opinion 

Personally I find this subject really interesting which can be justified by my decision              
to select this speciality at first but I did not expect that the level that has been                 
presented and required would be doubled by the professors. When you explain the             
concepts in class I more or less try to follow them and get to understand them at that                  
moment but due to my insufficient level of background on this subject, things get              
really difficult for me to understand when solving problems on my own. My coding              
background is not that good either but I am able to compute, more or less,               
something that I understand well. I am not sure if the exam would have had the                
same level as this assignment or easier but sincerely, after studying the problems             
solved in the class I would be able to solve just the problems that are very similar to                  
the ones solved in class because of my insufficient knowledge in this topic. In this               
assignment I have done my best, tried to understand some concepts relating one to              
another but I am not pretty satisfied with what I am presenting. I could do better if I                  
had better knowledge. Regardless of having five or six more assignments for this             
week, I dedicated a lot of time giving my best to solve this assignment. I also realized                 
that the colleagues who graduated from ESEIAAT, were able to solve the problem             
probably they had done similar assignments back then. The fact that they have more              
knowledge about aeroelasticity thanks to the subjects taught in graduation made me            
feel bad because I could not. The planning of this master’s course says everybody is               
welcome to join this course but once I was in, many professors said this master               
course is designed for ESEIAAT students. I feel like they are not considering             
students from other universities. Everyone is here because they are interested in            
learning more but it will never happen without a little support from part of the               
professors.  
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where γ = qinfSeCl,α.

Dividing both sides of the equation by KT and defining an arbitrary non dimensional
parameter q̄ as

q̄ =
γ

KT

=
qinfSeCl,α

KT

(12)

the system becomes:[
5 −2
−2 2

] [
θ1

θ2

]
− q̄

[
1 0
0 1

] [
θ1

θ2

]
= q̄

[
1
1

]
αo + q̄

(
Cl,δ
Cl,α

+
c

e

Cm,δ
Cl,α

)[
0
1

]
δo (13)

We note that all the values of the problem are constant, αo and δo are inputs, independent
of θ1 and θ2.
Lets consider the following notation for the previous equation:

[[KS]− q̄ [KA]]

[
θ1

θ2

]
=

[
Q1

Q2

]
(14)

where [Qi] are input loads and [θi] the wing deformed system equilibrium state vector. If
we also add the following assumption[

θ1

θ2

]
=

[
θS1
θS2

]
+

[
δθ1

δθ2

]
(15)

where [δθi] is the vector of perturbation twist angles, the equation in (13) can be rewritten
as follows for the existence of the perturbed equilibrium state[

K̄ij

]
{δθi} = Qj −

[
K̄ij

]
{θSj } = {0} (16)

To satisfy the previous requirement, we need that the determinant of the stiffness matrix
become equal to zero. Regarding our simplification of the problem, the determinant of
the stiffness matrix is

5 ([KS]− q̄ [KA]) = q̄2 − 3q̄ + 1 (17)

The divergence condition then is obtained when computing the roots of this characteristic
equation. In this case: q̄D = 0.382 and q̄D = 2.618.

Here we interpret this roots as the eigenvalues of the problem and the smaller one is the
nondimensional divergence dynamic pressure.

1 Problem discretization

Now lets consider that instead of having two panels we have a succession of n panels to
idealize the wing.

3
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Vd =

√
2qD
ρ

(21)

For our case, considering that ρ = 1.255 kg/m3, the divergence velocity obtained for
in-compressible flow is:

VD = 357.6 m/s

3 Twist angle configurations

Once we have obtained the q̄ values, a plot of the twist angle distribution along the
entire wing can be computed for the divergence dynamic pressures. I have considered
here that the outer half part of the wing has control surfaces and the other one does not.
Also, we suppose that the aileron is the 30% of the total chord in order to compute the
different coefficients (then η = 0.5, beta = 0.7 and 100 panels). The results obtained are
the following:

The solution for the system eigen-vectors is:
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Figure 4: First 5 modes of the elastic twist associated

And the twist distribution along the wing (solving system in Eq. 13 for the divergence )
is for the first 5 conditions of divergence:

5
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Figure 5: Twist distribution along the wing

We can see that as we do not have a wing with constant properties, the twist angle has
greater oscillations in the control surface part of the wing.

At this point it is important to mention that the accuracy of the results is directly
influenced by the number of panels selected. The velocity obtained is considering 100
panels. Considering less, the error on the divergence dynamic pressure will be higher
and then the velocity will not be accurate.

4 Reversal velocity

The total lift generated by the wing is

Lflex =
∑

Li = f(θi, αoδo) (22)

As the purpose of the aileron is to generate lift, the reversal condition then will happen
when this Lflex becomes zero.

Lflex = L1 + L2 = qSCLα (θ1 + θ2) + qSCLδ
δo (23)

where the twist angle is a function of q̄.

Then, computing the values of θi as a function of q̄ we can find a new polynomial with
the same order as panels and we will just repeat the procedure done for the divergence
dynamic pressure. Which means, finding the non-dimensional dynamic pressure that
makes the total lift be equal to zero and compute the corresponding reversal speed using
equation (20). For the simple example of two surfaces:

6
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Until now, I will consider only 10 panels in order to make the calculation process of
the total lift. This is due to the use of symbolic variables inside matrices, and the
manipulations of them is so slow.

5 Reversal vs Divergence velocity

Following the previous procedure to compute the control reversal condition for the
aileron, the following results have been obtained for different configurations of η and β:

We can note that for a given value of β, as we increase the area of the wing without
control surface, the reversal speed becomes greater and those the UR/UD factor. This
is normal because we are reducing the aileron area and then its influence over the wing
reversal condition.

Also we see that as we increase of β, the UR/UD factor value becomes smaller. this is
due to the same reason as before, the aileron is smaller.
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Figure 6: Twist distribution along the wing

6 Discussion

6.1 Avoid reversal

Between the low speed range where the aileron works as intended and the high speed
range there is one speed point where the rolling moments of the aileron and the wing
twist cancel each other out. There is where reversal occurs. To avoid this we can set
the speed at which full aileron deflection produces only a quarter of the rolling moment
coefficient as we will never exceed speed. In terms of η and β, a trivial solution is to
consider that we do not have a control surface, which means η = 1 and β = 1.

7
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6.2 UR/UD > 0.5

From the plot in figure 7, this condition is achieved for:

• values of β bigger than 0.5 but minor than 0.9.

• values of η bigger than 0.5 (aprox) and minor than 0.85
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Figure 7: Twist distribution along the wing

7 Feedback

In general I consider that this exercise has been very complete and much of what was
learned in class has been addressed. Also, I think that the Master is to enjoy it, we
are tired of exams. I am very satisfied with the result and although I know that I am
using a bad method to calculate the reversal speed, I hope we correct the exercice in class.

Regarding the content of the subject, I think it is very balanced and what is expected is
obtained from it.

8
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1 Introduction

A flat plate on a wind tunnel clamped on one side and free on the other will be considered,

simulating a wing during flight conditions. The plate has a rigidly attached control

surface, the position and size of which are determined by the parameters η and β, as

depicted in Figure 1. This control surface can be deflected an angle δ (δ > 0 downwards)

in order to increase the total lift on the plate. The plate has an aspect ratio AR = 6

and the chord size is c = 400mm. From a structural test, it has been determined that

the plate’s effective stiffness to a torsional load is GJ = 38kNm2 and its elastic axis is

located at 0.35c from the leading edge.

Figure 1: Description of the problem.

The objective is to determine a position and size for the control surface and, to do so, we

require information regarding the control surface reversal condition for different combi-

nations of β and η. For this study, lumped panel elements will be used to discretize the

plate, assuming their section satisfies the requirements for thin airfoil theory. All angles

will be assumed small.

It is understood that this report complements the lectures. This means that the report

will contain the explanation of why procedures already done in the lectures are being

used but they will not be explained. Some definitions used in the report are referenced

to the page of the lecture where they belong but will not be explicitly defined.

2
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2 Divergence speed UD of the plate

The plate will be discretized in N equal sized panels as described in Session 3 (slides

from 3 to 7) and Problem 3, see Figure 2. As for constant properties each panel will

have equal effective stiffness and geometry, c = 0.4m width = b/Nm. The non constant

property will be that those panels in a position where y > ηb will be considered as an

airfoil with a control surface deflected in an angle δ. α0 = 0 will be considered for the

whole problem.

Figure 2: Discretization model.

The divergence speed can be obtained from the homogeneous form of the equilibrium

of moments equation for each panel of the wing as seen in Problem 3. The divergence

speed will be the one corresponding to the dynamic pressure of the first eigenvalue. The

equilibrium of moments equation is solved as a system with the structural stiffness term

(Ks) and the aerodynamic stiffness term (Ka) multiplying the matrix of θ and the input

aerodynamic load (Q) as RHS. The existance of a control surface in some of the panels

affects only the RHS because the lift and momentum generated by its deflecion do not

depend on θ. For this reason the procedure to find the eigenvalues will be the one de-

scribed in Problem 3.

As the first eigenvalue is the non-dimensional form of the divergence dynamic pressure

(q̂D) it is neccessary to multiply it by qDa , the analitical solution for the divergence

condition mentioned in slide 1 of Problem 3, to obtain qD because it is the one used to

nondimensionalize. It is assumed that ρ = 1.225kg/m3. Cl,α = 2π, as seen in Problem 1.

uD =

√
2 · q̂D · qDa

ρ
= 514.159m/s (1)

3
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3 First 5 modes of the elastic twist and their diver-

gence speeds

In Section 2 we have calculated the smallest divergence speed choosing the first eigen-

value. The next 4 eigenvalues have already been calculated in the process, with their

corresponding eigenvectors. The process to calculate the divergence speed of these modes

is the same (Equation 1).

Figure 3: First 5 modes of the elastic twist.

The divergence speeds for these modes are in Table 1.

Mode Mode 1 Mode 2 Mode 3 Mode 4 Mode 5
Divergence speed [m/s] 514.16 1542.47 2570.79 3599.11 4627.43

Table 1: Divergence speeds.

4
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4 Plot of UR/UD for different values of η and β

In order to find the speed for control reversal conditions it is necessary to solve the system

imposing control reversal condition. This means that the q∞ of the equation will be qR

and one of the unknowns of the problem. Having N θs as unknowns of the problem and

N equations we need to add another equation to the system. According to the slides

of Session 2 (pages 4-7), control reversal condition for an airfoil can be written in the

following way.

dl

dδ
= 0 (2)

If we imagine that the plate presented in the problem represents an airplane wing with

an aileron, and imagining there would be an equal plate on the other side with an aileron

working in the opposite direction, control reversal condition for the airplane would occur

when the total lift of the plate becomes smaller with a positive deflection of δ. For this

reason, it is logical to think that the control reversal condition asked for the whole plate

is the one that occurs when the derivative of the total lift of the plate with respect to δ

meets the same condition as the control reversal condition for an airfoil.

dL

dδ
= 0 (3)

Adding this condition, the number of unknowns equals the number of equations. The

total lift of the plate can be calculated as the sum of the lift generated by every panel,

and, as the derivative of the sum of two functions is equal to the sum of their derivatives,

Equation 3 can be written as follows.

d
n=N∑
n=1

l(n)

dδ
=

n=N∑
n=1

dl(n)

dδ
= 0 (4)

To calculate the aerodynamic coefficients of every panel the results of Problem 1 will be

used. The following equations represent the contribution to the lift of a panel without

aileron (Equation 5) and a panel with aileron (Equation 6).

l
(n)
flat = qR

cb

N
Cl,αθ

(n) (5)

l
(n)
aileron = qR

cb

N
Cl,αθ

(n) + Cl,δ (6)

The derivatives of these equations need to be used for Equation 4.

5
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dl
(n)
flat

dδ
= qR

cb

N
Cl,α

dθ(n)

dδ
(7)

dl
(n)
aileron

dδ
= qR

cb

N
Cl,α

dθ(n)

dδ
+ Cl,δδ (8)

Figure 4: Simplified system of equations for a lumped panel elements problem (constant
properties), useful to visualize the problem.

To solve the problem it is neccessary to obtain the derivative of θ with respect to δ from

the system of equations. With this objective the system of the equilibrium of moments

mentioned in Section 2 is derived with respect to δ. The structural stiffness term (Ks) and

the aerodynamic stiffness term (Ka) do not depend on δ, so they stay equal. The matrix

of θ will turn into a matrix of θ derived with respect to δ and the input aerodynamic load

(Q) will remain as follows.

RHSflat = 0 (9)

RHSaileron = Mac,δ + L(δ)eδ (10)

Equation 9 refers to the RHS of the equations of the system corresponding to panels

without aileron, while Equation 10 is the RHS of the equations for the panels with

aileron. If the RHS is 0 for the panels without aileron, dθ/dδ = 0. So panels without

aileron will not contribute to Equation 3.

dl
(n)
flat

dδ
= 0 (11)

In Equation 10, L(δ) is the contribution to the lift that is multiplied by delta and eδ is the

distance between the aerodinamic center of the aileron and the shear center of the plate.

Substituting the values and nondimensionalizing, the RHS of the momentum equation

would be the following.

6
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ˆRHS =
q̂Reδ
Cl,αe

Cl,δδ +
q̂Rc

Cl,αe
Cmac,δδ (12)

Where q̂R is qR/qD. And deriving with respect to delta we obtain the following.

dQ̂

dδ
=
q̂Reδ
Cl,αe

Cl,δ +
q̂Rc

Cl,αe
Cmac,δ (13)

The procedure to find the uR now is to isolate the variable matrix of dθ(n)/dδ of the

system and introduce it into Equation 4 to iterate around different values of qR until

control reversal condition is met. This process is repeated for a series of β and η to

obtain the following graph.

Figure 5: UR/UD vs. η for β = {0.5, 0.6, 0.7, 0.8, 0.9}

7
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5 Discussion of the sets of values of β and η

As it can be seen in Figure 5 the shape of an aileron can significally affect the point

where control reversal starts to happen. The plot can be read choosing a β curve and, if

the U/UD is situated under the curve, control reversal is not happening. If the speed is

higher, the lift decreases when deflecting the aileron and control is reverted.

It can be seen that the higher the β, the smaller the UR needed for control reversal to

happen. A high β means a thin aileron and a bigger distance between the application

point of L(δ) and the shear center line. So, according to Figure 5, thin ailerons reach

control reversal earlier.

As for the dependence on η, the bigger it is the smaller is the aileron. If an aileron is very

small the UR goes to infinite. The bigger the aileron is, the bigger its lift, and the momen-

tum decreasing the aerodynamic moment of the wing, making control reversal happen

erlier (UR decreases). When the aileron is so big that gets very close to the embedding,

the stiffness of the wing does not allow the area near it to bend so much, so the aileron

starts contributing to the lift with less reduction of θ.

In order to avoid control reversal conditions, the best option would be having no aileron

or a very small one. In this case UR could even be over UD, making control reversal not

possible. Of course, it would make no sense because the objective of having an aileron

is to have control over the lift generated. The most feasible options would be when the

control reversal speed is the highest but with a reasonable size for the aileron. According

to Figure 5, the most suitable values of β would be between 0.5 and 0.8, and of η between

0.6 and 0.85.

Another solution that can be considered to avoid control reversal conditions in flying

conditions where the speed is near UR is to avoid the use of control surfaces near the edge

of the wing and use other control surfaces located near the embedding, so the stiffnes of

the wing prevents the decrease of θ. Increasing the stiffness of the wing can help avoid

control reversal too.

UR/UD is greater than 0.5 for all the β represented when η > 0.85. It can be seen in

Figure 5 where the curves from the different β cross UR/UD > 0.5.

8
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1 Problem definition

Consider a flat plate on a wind tunnel clamped on one side and free on the other, simulating a wing
during flight conditions. The plate has a rigidly attached control surface, the position and size of which
are determined by the parameters η and β, as depiced in Fig. 2. This control surface can be deflected
an angle δ (being δ > 0 downwards) in order to increase the total lift on the plate. The plate has an
aspect ratio AR = 6, and the chord size is c = 400mm. From a structural test, it has been determined
that the plate’s effective stiffness to a torsional load is ḠJ = 38 kN ·m2 and its elastic axis is located
at 0.35c from the leading edge.

Figure 1: Problem definition. Source: [3]

1.1 Hypotheses

Before writing the equations and drawings applicable to this problem, it is necessary to define the
hypotheses that will be assumed during the resolution of this exercise:

Geometrical

− Flat plates

− Small angles α << 1

− No geometrical torsion by design (α0=0)

− α = θ +��*
0α0

− δ = ct. across all control surface span

Aerodynamic

− Potential incompressible flow (no viscous effects)

− TAT (Thin Airfoil Theory) applicable

− Lift at each section L(i) independent of surrounding panels

− Discretization of wing into N lumped elements

Structural

− Control surface rigidly attached to the wing

− Torsional stiffness ḠJ and elastic axis position e are constant across all span
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2 Analytical development

2.1 Aerodynamic Coefficients

Before solving the divergence or control reversal problem, it is necessary to define the aerodynamic
modellization of the wing. Because we’ve assumed that lift at each section is completely independent
of surrounding areas (which is not true for Prandtl’s lifting line theory!), we can compute aerodynamic
coefficients for a generic section with control surface:

Figure 2: Aerodynamic forces in an generic airfoil with control surface. Source: [1]

The procedure presented in Problem 1-Divergence of an airfoil [1] is here used to retrieve the aerody-
namic coefficients of an airfoil with control surface:

l =
1

2
ρ∞u

2
∞c · (Cl, α · θ + Cl, δ · δ) (2.1)

Cl, α = 2π (2.2)

Cl, δ = 2π · 3(2β + 1) · (1− β)

3 + 4β · (1− β)
(2.3)

The aerodynamic center is located at:
xAC =

c

4
(2.4)

And the moment about the aerodynamic center only depends on δ, due to the fact airfoil is a simple
flat plate with control surface:

Cmac, δ =
−3π

2
· β · 1 + β − 2β2

3 + 4β · (1− β)
(2.5)
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2.2 Lumped Elements Discretization

The presented wing in Fig. 2 is divided into a total of N lumped panels. Because of the presence of
control surface, which can start at an arbitrary span on the wing, panels have been discretized into
2 zones, each of them with uniform spacing. First zone with N1 panels is the one without control
surface; while the second zone with control surface is divided into N2 panels.

In case a uniform spacing was used for all wing span, panels might not fit with the edges of control
surface; so it has been decided to split discretization into 2 zones. In any case, total number of panels
N is preserved:

Figure 3: Wing panels discretization

The discretization of wing’s semispan into these lumped panels leads to a numerical approximation to
the physical problem, in which external forces such as lift are applied each of the finite N panels, while
consecutive panels are joint with an equivalent stiffness torsional spring.

Mind that because we’re only interested in divergence and control reversal phenomena, studied stiffness
is only torsional, so no bending/plunging movement will be studied.

Figure 4: Forces and geometry of lumped panels
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For discretization, first are created the positions yedge that delimit each panel. Span of each panel can
be computed with the difference of yedge:

b(i) = y
(i)
edge − y

(i−1)
edge (2.6)

Then, y positions are computed at the center of each panel, and also root and wingtip positions are
added.

y(i) =
y
(i)
edge + y

(i−1)
edge

2
(2.7)

Because each panel is assumed as a rigid body connected with torsional springs, number of DOFs is
equal to the number of panels N:

{θ} =



θ1

θ2

...

θi

...

θn


(2.8)

2.3 Static problem definition

Having defined the discretization to be used in this numerical problem, we can start writing their
applicable equations. We know that torsion along a beam is governed by the following relation:

T

GJ
=
dθ

dy
(2.9)

Because domain has been discretized into N lumped panels, we can use a 1st order approximation of
the derivate:

T (i) =
ḠJ

(i)

y(i) − y(i−1)
· (θ(i) − θ(i−1)) (2.10)

From the previous eq. 2.10, torsional stiffness at each panel k(i)t can be computed as the following:

T (i) = k
(i)
t · (θ(i) − θ(i−1)) (2.11)

Being the torsional stiffness k(i)t :

k
(i)
t =

ḠJ
(i)

y(i) − y(i−1)
(2.12)

Both divergence and control reversal phenomena are obtained under the hypothesis of static equi-
librium about the elastic axis: ∑

M (i) = I(i) ·
�
�
���

0

dθ(i)

dt2
(2.13)

M (i)
ac + L(i) · e(i) − k(i)t · (θ(i) − θ(i−1))− k

(i+1)
t · (θ(i) − θ(i+1)) = 0 (2.14)

Being:
M (i)
ac = q∞ ·

(
c(i)
)2 · b(i) · C(i)

mac, δ · δ
(i) (2.15)

L(i) = q∞ · c(i) · b(i) ·
[
Cl, α · θ + Cl,δ · δ

]
(2.16)

Now, it is time to define and apply the corresponding BCs:
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• At i=1 the root is clamped: θ(0) = 0

M (1)
ac + L(1) · e(1) − k(1)t · θ(1) − k

(2)
t · (θ(1) − θ(2)) (2.17)

− At i=N the wingtip is free, no torsion is applied: θ(n+1) = θ(n)

M (n)
ac + L(n) · e(n) − k(n)t · (θ(n) − θ(n−1)) (2.18)

By substituting expressions of moment 2.15 and lift 2.16 into static equilibrium equation 2.14, the
following expression is obtained:

q∞·
(
c(i)
)2·b(i)·C(i)

mac, δ·δ
(i)+e(i)·q∞·c(i)·b(i)·

[
C

(i)
l, α·θ

(i)+C
(i)
l, δ·δ

(i)
]
−k(i)t ·(θ(i)−θ(i−1))−k

(i+1)
t ·(θ(i)−θ(i+1)) = 0

(2.19)
If we order by terms:

−k(i)t · θ(i−1) +
(
k
(i)
t + k

(i+1)
t − e(i) · q∞ · c(i) · b(i) · C(i)

l, α

)
· θ(i) − k(i+1)

t · θ(i+1) =[
q∞ ·

(
c(i)
)(2) · b(i) · C(i)

mac, δ + e(i) · q∞ · c(i) · b(i) · C(i)
l, δ

]
· δ(i)

(2.20)

In matrix form, we can arrange the following system of equations:(
[Ks]− q∞ · [Ka]

)
{θ} = {Q} (2.21)

The stiffness matrix Ks:

[Ks] =


k
(1)
t + k

(2)
t −k(2)t 0 ... 0

−k(i)t kt(i) + k
(i+1)
t −k(i+1)

t ... 0

... ... ... ... ...

0 ... −k(n−1)t k
(n−1)
t + k

(n)
t −k(n)t

0 ... 0 −k(n)t k
(n)
t

 (2.22)

While the matrix Ka, containing aerodynamic coefficients affected by θ:

[Ka] =


e(1) · c(1) · b(1) · C(1)

l, α 0 ... ... 0

0 e(i) · c(i) · b(i) · C(i)
l, α 0 ... 0

... ... ... ... ...

0 ... ... e(n−1) · c(n−1) · b(n−1) · C(n−1)
l, α 0

0 ... ... ... e(n) · c(n) · b(n) · C(n)
l, α


(2.23)

And the vector of external torque, which contains parameters that do not depend on variable θ, but
on enforced δ:

{Q} = q∞·



(
(c(1))2 · b(1) · C(1)

mac, δ + e(1) · c(1) · b(1) · C(1)
l, δ

)
· δ(1)

...(
(c(i))2 · b(i) · C(i)

mac, δ + e(i) · c(i) · b(i) · C(i)
l, δ

)
· δ(i)

...(
(c(n−1))2 · b(n−1) · C(n−1)

mac, δ + e(n−1) · c(n−1) · b(n−1) · C(n−1)
l, δ

)
· δ(n−1)(

(c(n))2 · b(n) · C(n)
mac, δ + e(n) · c(n) · b(n) · C(n)

l, δ

)
· δ(n)


= q∞·{Qcoeffs}·{δ}

(2.24)
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2.4 Divergence speed UD of the plate

In the previous Section it was obtained the system of equations for static equilibrium 2.41. Thus, it
can be used both for divergence uD and control reversal uR:(

[Ks]− q∞ · [Ka]
)
{θ} = {Q} (2.25)

Divergence condition qD occurs when aerodynamic forces are such that θ can not find a finite equilib-
rium value. In mathematical form:

θ −→∞ (2.26)

For a general N DOFs case, this situation occurs when the previous system of eqs. 2.25 can not be
solved, because determinant is zero:

det([Ks − qD[Ka]) = 0 (2.27)

By applying algebraic manipulation to eqs. 2.25:

([Ka]
−1[Ks]− qD[1]){θ} = [Ka]

−1{Q} (2.28)

We can obtain qD as an eigenvalue problem of the homogeneous system. In this new expression,
divergence occurs for those eigenvalues λi = 0. Mind that external torque {Q} is not used for divergence
computation qD:

([Ka]
−1[Ks]− qD[1]− λi[1]){θ} = {0} (2.29)

In the previous expression 2.29, the solution to be found qD is an unknown, together with eigenvalues
λi. In order to reduce the number of unknowns of the system so it can be solved, a new variable λ′i is
defined:

λ′i = (qD + λi) (2.30)

And the system to be solved is:

det([Ka]
−1[Ks]− λ′i[1]) = {0} (2.31)

Because divergence occurs at λi = 0, qD is the minimum positive eigenvalue λ′i:

λ′i = (qD +���
0

λi); qD = min(λ′i > 0) (2.32)

From dynamic pressure qD, divergence velocity uD is directly calculated:

uD =

√
2 · qD
ρ0

(2.33)

being ρ0 = 1.225[kg/m3] air density at sea level.

Of course, because the system has N DOFs, a total of N values of uD can be obtained, even they lack
physical meaning because the 1st mode is already a catastrophic failure. In any case, higher modes
are also computed and saved for later comparison.

In addition, qD for the case of rectangular wing with constant properties across the span has analytical
solution, that can be found in [2] pag.6:

qD|analytical =
π2

4b2
GJ

ceCl, α
(2.34)
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2.4.1 Grid Convergence Analysis

In order to assess the effect of mesh size, which is the number of panels for wing discretization, uD is
computed for different N panels. Afterwards, error is assessed as the difference between uD obtained
numerically, and the reference analytical solution for a rectangular wing with constant properties:

ε =
uD − uD|analytical
uD|analytical

(2.35)

The obtained results are plotted in a loglog scale:

Figure 5: Grid Convergence Analysis for uD

Due to the reduced computational cost of this problem, it has been decided to use N=1000 panels both
for computation of divergence velocity uD and control reversal uR, with an estimated error ε ≈ 1e− 7.

2.4.2 Divergence results

In the following Table 1 are presented the obtained divergence velocities uD for the first 5 modes:

Divergence
Mode uD [m/s]

#1 514.2
#2 1542.5
#3 2570.8
#4 3599.1
#5 4627.4

Table 1: Divergence velocities uD of the wing
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At first glance, it can be seen that the obtained divergence velocities uD are in the supersonic
regime Ma > 1; so hypothesis of potential incompressible flow is not valid. In order to
obtain accurate results, aerodynamic modellization for matrix [Ka] should be revised in case of super-
sonic compressible flow.

After applying the previous mathematical procedure in Matlab, the obtained divergence value for the
1st mode is:

uD = 514.2 [m/s] (2.36)

It is worth noting that the obtained divergence velocity uD does not depend on the position of
control surface. This has been checked with Matlab as a code verification. Also, when comparing
with analytical solution, obtained numerical results with N=1000 are equal:

uD|analytical =

√
2 · qD|analytical

ρ0
= 514.2 [m/s] (2.37)

2.5 Plot 5 first modes of elastic twist, associated to corresponding UD

After obtaining divergence speeds uD for each mode, also a plot of their eigenvectors is here displayed:

Figure 6: Normalized modes for the first 5 divergence velocities uD

The modes presented in the previous Fig. 6 are normalized with their maximum value, so their bounds
are between [-1, 1]. It is clearly seen that 1st mode corresponds to the simplest one, with θ = 0 at
wing root and tending to θ →∞ at wingtip.

Higher modes have the same number of inflection points as the Nº mode. For example, mode #2 tends
to divergence at y/b = 0.32 and wingtip. However, as commented previously, higher modes are not
physically feasible, because 1st mode will occur at a lower velocity uD and it produces a catastrophic
failure.
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2.6 Plot UR/UD vs. η for β = {0.5, 0.6, 0.7, 0.8, 0.9} (UR is the speed at control surface
conditions

Control reversal condition is a static aeroelasticity phenomena that occurs when a deflection of control
surface δ does not produce a change in total lift of the wing. In these conditions, it is said that control
surface has lost its effectiveness, because it is not useful for controlling the aircraft.

The schematic of how control reversal occurs is here presented Fig. 7:

Figure 7: Control Reversal phenomena schematic

In mathematical form, for an airfoil section, control reversal occurs when:

∂{l(i)}
∂δ

= 0 (2.38)

However, because now we’re treating with a complete wing, we shall evaluate total lift of the wing,
which is the sum of each panel:

∂
∑N

i=1{l(i)}
∂δ

=
N∑
i=1

∂{l(i)}
∂δ

(2.39)

We know that general expression of lift at each panel in vector form is the following. For better
readiness, the upper indices "(i)" are omitted, even these are quantities per each panel:

{l} = q∞ · {c} · {b} ·
[
{Cl, α} · {θ}+ {Cl, δ · {δ}}

]
(2.40)

In the previous eq. 2.40, lift at each panel {l} depends both on current torsion {θ} and also control
surface deflection {δ}.

Coming back to the general system of equations for the static problem:(
[Ks]− q∞ · [Ka]

)
{θ} = {Q} (2.41)

We isolate deflection at each panel θ:

{θ} =
(

[Ks]− q∞ · [Ka]
)−1
∗
(
q∞ · {Qcoeffs} · {δ}

)
=
(

[Ks]− q∞ · [Ka]
)
\
(
q∞ · {Qcoeffs} · {δ}

)
(2.42)

Where backslash operator "\" is as useful tool in Matlab to avoid computing the inverse when solving
a linear system of equations:

A ∗ x = b; x = A\b (2.43)

Substituting {θ} in lift eq. 2.40:

{l} = q∞ · {c} · {b} ·
[
{Cl, α} ·

(
[Ks]− q∞ · [Ka]

)
\
(
q∞ · {Qcoeffs} · {δ}

)
+ {Cl, δ · {δ}}

]
(2.44)
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Now we have written the system of equations dependant only on deflection δ; so control reversal
condition as expressed in eq. 2.39 is applied:

F =
N∑
i=1

(∂{l}
∂δ

)
= 0 =

N∑
i=1

qR·{c}·{b}·
[
{Cl, α}·

(
[Ks]−qR·[Ka]

)
\
(
qR·{Qcoeffs}·{CS}

)
+{Cl, δ·{CS}}

]
(2.45)

Where variable CS is defined as:

CS =
∂{δ}
∂δ

=

{
0 for panels without control surface
1 for panels with control surface

(2.46)

In order to avoid the trivial solution q = 0, we omit the common terms q∞ · {c} · {b} from the control
reversal function, and preserve the equation inside brackets:

F =
N∑
i=1

(∂{l}
∂δ

)
= 0 =

N∑
i=1

[
{Cl, α}·

(
[Ks]−qR · [Ka]

)
\
(
qR ·{Qcoeffs}·{CS}

)
+{Cl, δ ·{CS}}

]
(2.47)

This highly nonlinear eq. 2.47 is the function that has to be solved, so the scalar control reversal qR
is found. To do it, function fsolve has been used in Matlab, recovering qR for different configurations
of β and η. The obtained results are the following Fig. 8:

Figure 8: Control Reversal velocity ratio uR/uD results

When observing ratio uR/uD for different positions β and η of the control surface, the following trend-
line is deduced: for smaller size of control surface (which is associated to small chord of control
surface β ↑ or small span of control surface η ↑), then control reversal velocity uR is lower.

So, the smaller the control surface is, it is more prone to experience control reversal at lower velocities.
In any case, it is important to notice that obtained velocities here are in compressible range, so
potential incompressible flow hypotheses are no longer valid: analysis should be refined with more
accurate aerodynamic modellization in the transonic/supersonic regime.
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2.7 A discussion on the possible sets of values of β and η for which:

2.7.1 Surface control reversal can be avoided

For control reversal to be avoided, there are 2 possibilities:

• uR/uD ≥ 1. If control reversal velocity is higher than divergence, then uD would occur before,
and it will be the most limiting factor. Remember uD results into catastrophic failure, while
control reversal uR is usually a loss of maneuverability, but does not generally end up into a
structural failure.

• uR < 0. If no positive control reversal velocity is found from eq. 2.47, then this phenomena
would not occur.

For all the range analyzed in Fig. 8, control reversal occurs at lower velocities than divergence, so uR
would be the limiting factor for high speeds.

In order to check a wider design envelope, it was decided to compute uR for more β positions of control
surface:

Figure 9: Control Reversal velocity ratio uR/uD results. Extended analysis

In this case, it was observed that for β < 0.4, uR had no real part, but it was an imaginary number.
So, for β < 0.4, control reversal would not occur.

2.7.2 UR/UD > 0.5

According to Fig. 8, for all the range β ∈ {0.5; 0.9} and η ∈ {0.05; 0.95}, the relation uR/uD > 0.5
is true. Thus, this statement is fulfilled for all the analyzed control surface positions in 8.
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Control surface reversal condition for a wing 
Consider a flat plate on a wind tunnel clamped on one side and free on the other, simulating a 

wing during flight conditions. The plate has a rigidly attached control surface, the position and 

size of which are determined by the parameters 𝜂 and 𝛽, as depicted in Figure 1.  

Figure 1: Problem description. Geometry and parameters identification. 

This control surface can be deflected an angle 𝛿 (𝛿>0 downwards) in order to increase the total 

lift on the plate. The plate has an aspect ratio AR=6 and the chord size is c = 400 mm. From a 

structural test, it has been determined that the plate’s effective stiffness to a torsional load is 

GJ =38 kN m2
 and its elastic axis is located at 0.35𝑐 from the leading edge.  

a) Divergence speed
Continuous beam and uncoupled aerodynamics analytical solution (extracted from page 41 of 

the lecture 3) which is valid even for deflections of the control surface as it does not affect the 

static stability of the system: 

𝑞𝐷 =
𝜋2𝐺 · 𝐽

4𝑏2 · 𝑐 · 𝑒 · 𝑐𝑙𝛼
= 161920 𝑃𝑎 (1) 

Which at sea level will correspond to (𝜌 = 1.225 𝑘𝑔/𝑚3) a flight velocity of: 

𝑈𝐷 = 514.16 𝑚/𝑠 

Discretised Systems of equation 

∑𝑀

𝑆𝐶

= (𝐾𝑠 − 𝑞𝐾𝑚,𝛼)𝜃 + 𝑞𝐾𝑚,𝛿𝛿 + 𝐶𝑚,𝑎𝑐 = 0 (2) 

𝑙 = 𝑞(𝐾𝑙,𝛼(𝛼 − 𝛼0) + 𝐾𝑙,𝛼𝜃 + 𝐾𝑙,𝛿𝛿) (3) 

The divergence condition is when there is not a solution on the moment’s equation. This is 

achieved by solving the following eigen-values problem (equation extracted form lecture 3 page 

34): 

(𝐾𝑠 − 𝑞𝐾𝑚,𝛼)𝜃 = 0 (4) 

Which can be transformed to (equation extracted form lecture 3 page 34): 

(𝐾𝑚,𝛼
−1  𝐾𝑠 − 𝑞𝐼)𝜃 = 0 (5) 
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Concretely, the lowest positive eigenvalue is the divergence condition (𝑞𝐷 = min(𝑞 > 0)), 

obtaining the following convergence plot for the lumped system: 

Figure 2: Convergence plot. Lumped panel method. 

From this plot it is possible to extract that for more than 8 panels the solution has a relative 

error to the analytical solution (eq. 1), of less than 1%. However, 100 panel will be used in order 

to precisely allocate the wing distribution of the control surface 𝜂. 

b) First 5 eigen-modes of divergence
From the previous development (the eigen-values problem) it is possible to obtain the 5 first 

eigenmodes of the system: 

Figure 3: Five first eigen-modes. Lumped panel method. 
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c) Control surface reversal condition
The control surface reversal condition occurs when a deflection of a determined control surface 

do not perform the desired control action, instead, it performs the opposite one. At the limit, 

this condition can be determined when the sensitivity of a magnitude to a deflection of a control 

surface is null. From this problem two different desired control actions may be studied, on one 

hand, the sensitivity of the total wing lift vs a deflection of the control surface (
𝜕𝐿

𝜕𝛿
= 0). On the 

other hand, the sensitivity of the roll moment generation by the control surface (
𝜕𝑀𝑥

𝜕𝛿
= 0). 

To solve this equation, the lift distribution (eq. 3) must be solved as a function of the control 

surface deflection (𝛿) and the dynamic velocity (𝑞): 

𝑙 = 𝑞(𝐾𝑙,𝛼(𝛼 − 𝛼0) + 𝐾𝑙,𝛼𝜃(𝛿, 𝑞) + 𝐾𝑙,𝛿𝛿) (6) 

Concretely: 

𝜃 = − (𝐾𝑠 − 𝑞𝐾𝑚,𝛼)
−1
( 𝑞𝐾𝑚,𝛿𝛿 + 𝐶𝑚,𝑎𝑐) (7) 

Where 𝐶𝑚,𝑎𝑐 = 0 and 𝛼0 = 0 because it is a symmetric airfoil:  

𝑙 = 𝑞 [𝐾𝑙,𝛼𝛼 + (𝐾𝑙,𝛿 −𝐾𝑙,𝛼  (𝐾𝑠 − 𝑞𝐾𝑚,𝛼)
−1
( 𝑞𝐾𝑚,𝛿)) 𝛿] (8) 

Then, if both conditions are applied what is obtained is: 

Total lift condition: 

𝜕𝐿

𝜕𝛿
= 𝑞∑(𝐾𝑙,𝛿 −𝐾𝑙,𝛼  (𝐾𝑠 − 𝑞𝑅𝐾𝑚,𝛼)

−1
( 𝑞𝑅𝐾𝑚,𝛿))

𝑖
= 0 (9) 

And the rolling moment condition: 

𝜕𝑀𝑥
𝜕𝛿

= 𝑞∑𝑦𝑖 (𝐾𝑙,𝛿 − 𝐾𝑙,𝛼 (𝐾𝑠 − 𝑞𝑅𝐾𝑚,𝛼)
−1
( 𝑞𝑅𝐾𝑚,𝛿))

𝑖
= 0 (10) 

These equations might be solve using numerical schemes, concretely a simple Bolzano method 

will be used, using as intervals limits 𝑞𝑅 ∈ [0 , 𝑞𝐷). If there is a change of sign between this 

interval, there exist a solution with cross the x axis: 

Figure 4: Bolzano solution verification. Lumped panel method. 
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Finally, the solution for different wingspan and chord span position of the control surface can 

be plotted: 

Figure 5: Control reversal condition. Lumped Panel method. 

d) Results discussion
d.1 Surface control reversal conditions can be avoided.

Chord proportion of the control surface 𝛽: 

From the theory lecture 2, page 25 the following expression of flexible airfoil can be extracted: 

𝜕𝑙

𝜕𝛿
= 𝑞∞𝑐𝐶𝑙,𝛿

(

1+
𝑞∞
𝑞𝐷
(
𝐶𝑚𝑎𝑐,𝛿
𝐶𝑙,𝛿

) (
𝑐
𝑒
)

1 −
𝑞∞
𝑞𝐷 )

= 0 →
𝑞𝑅
𝑞𝐷
= −

𝑒

𝑐

𝐶𝑙,𝛿
𝐶𝑚𝑎𝑐,𝛿

(11) 

Where, from problem 1 page 4: 

𝐶𝑙,𝛿 = 6𝜋
1 + 𝛽 − 2𝛽2

3 + 4𝛽(1 − 𝛽)
;   𝐶𝑚𝑎𝑐,𝛿 = −

𝛽

4
𝐶𝑙,𝛿 → 

𝑞𝑅
𝑞𝐷
=
𝑒

𝑐

4

𝛽
(12) 

To obtain feasible solutions the following conditions must be satisfied: 

0 <
𝑞𝑅
𝑞𝐷
< 1 (13) 

From here it is possible to obtain two inequations: 

𝑞𝑅
𝑞𝐷
< 1 →

𝑒

𝑐

4

𝛽
< 1 → 𝛽 >

4𝑒

𝑐 (14) 

For ê=0.1 (as in this problem): 

𝛽1(ê = 0.1) > 0.4 (15) 

From this equation it can be seen that for 𝛽 lower than 0.4 it will not exist a control reversal 

condition within the range of divergence conditions. 
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The second condition is: 

𝑞𝑅
𝑞𝐷
> 0 →

𝑒

𝑐

4

𝛽
> 0 (16) 

From the previous results, it is possible to obtain that does not exist a feasible solution that 

avoids the divergence of the 1D problem. Then, it would occur for the range of 𝛽: 

0.4 < 𝛽 < 1 (13) 

In addition, control reversal condition can be improved by increasing the chord proportion of 

the control surface increasing the efficiency of the control surface respect the torsional moment 

generated.  

This effect can be clearly seen at figure 5 obtaining in both cases better control reversal speeds 

when increasing the control surface chord. Concretely, if 𝛽 < 0.5 the following results are 

obtained: 

Figure 6: Control reversal condition (𝜂 =  0): a) 𝛽 =  0.35. b) 𝛽 = 0.45. c) 𝛽 = 0.4. 

The results for the 2D wing problem are consistent with the flexible 1d airfoil. It can be seen that 

for 𝛽 < 0.4 the control reversal condition will not occur. This effect is maintained, 

independently of whether the whole wing is considered control surface or just a part of it, and 

for both control reversal conditions. 

55



Mid-term Exam – Assignment 

Control surface reversal condition 

A

6 

Wingspan proportion of the control surface 𝜂: 

The control force generated by the control surface is a linear function 𝜂, whereas the generated 

torsion of the wing by a deflection is parabolic function: 

Torsion moment: 

Figure 7: Torsion moment effect by control surface deflection. 

And the deflection is: 

Figure 8: Torsional deflection by control surface deflection. 

Then the obtained sensitivity distribution along the wingspan are: 

Figure 9: Total lift distribution comparison. 

Figure 10: Total Roll Moment distribution comparison. 

As it can be seen the balance between the torsion effect due to the control surface deflection 

and the extra lift generated by the control surface deflection is the main cause of the sensitivity 

of the 𝜂 parameter. Because of this effect, the linear part, where no control action is applied 

generates parasite reduction of the lift that is optimized when increasing the wing part that is 

used as a control surface. Whereas, the roll moment is optimized by positioning the control 

surface near the wing tip, as the distance effect is more important than the total lift generation. 
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Figure 11: Contribution of each section to the global sensitivity. 

d.2 𝑼𝑹/𝑼𝑫  > 𝟎. 𝟓.

Due to the geometric configuration of the shear center, the control reversal velocities are always 

higher than the half of the divergence speed. This is caused by using a distributed wing loading 

of both, extra lift generation and extra torsion moment generation. Making the 2D system more 

efficient than the 1D system studied at the lecture 2. As it is easier to have a total positive 

contribution of the control surface even if some parts of the wing are not contributing to extra 

lift generation Figure 11. 
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e) Opinion about the subject
• I think that the way this subject is structured is quite balance between theory and

problems, as every lecture there is a proposed problem that might be solved using the

taught information.

• The scope of the theory is quite similar to the one done at the subject of vehicle done

by Oriol Casamor. But, at that subject the same information was given very fast and

without understanding the basis of the coupling between structure and aerodynamics.

• I think that this subject might need a bit more projects evaluation than exam, as the

problems are complex enough to be made using programming. And the written examen

should be more about the physics of the problems rather than solving extremely

simplified cases.
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Rúbrica Project 

Item Pes 
Multiplicadors Nota 

1 0.5 0 (pes x multiplicador)/ 

1) L'estudiant ha obtingut
les característiques
estructurals del perfil
requerides per l'anàlisi.

1 

Implementació 
correcta i 
resultats 

coherents 

Esforç 
d'implementació 
amb algun error 
que condueix a 

resultats 
incorrectes 

No s'aporten 
resultats ni 

implementació 

A 

2) L'estudiant ha
implementat el model
aerodinàmic proposat:
obtenció de la matriu de
coeficients d'influència.

0.5 B 

3) L'estudiant ha
implementat el model
estructural proposat:
obtenció de matrius de
rigidesa i massa.

0.5 C 

4) L'estudiant ha analitzat
les condicions de
divergència per diferents 
ratis d'aspecte de l'ala.

1 D 

5) L'estudiant ha obtingut
els modes associats a les
condicions de divergència
per diferents ratis d'aspecte
de l'ala.

1 E 

6) L'estudiant ha estudiat
les condicions de flutter. 1 F 

4) Aspectes de qualitat de
l'informe 1 

Compleix 
criteris de rigor, 

precisió i 
concisió en la 

presentació de 
resultats 

No compleix els 
criteris de rigor, 

precisió i 
concisió en la 

presentació de 
resultats 

G 

5) Criteris d'excel·lència
valorables 1.5 

Plantejament teòric detallat de l'anàlisi de flutter 
(+0.5); Estudi de convergència numèrica/sensibilitat 
(+0.33); Altres configuracions d'ala (+0.33 per estudi 

extra). Màxim multiplicador (1). 

H 

Nota final (0-10) (A+B+C+D+E+F+G)/0.75 
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Setup of a virtual laboratory for studying aeroelastic
problems

C. A , C. N
Polytechnic University of Catalonia, Master’s program in Aeronautical Engineering

Abstract—This project is designed for the study of aeroelastic
problem through setup of a virtual laboratory. Basically, the
goal is to implement a set of MATLAB functions to perform
different kinds of aeroelastic analysis. These analysis could be
the observation of divergence conditions, flutter study, unsteady
aerodynamics, etc.

Key words—Aeroelasticity, wing, flutter, FEM, aerodynamics,
horsehoe, Theodorsen.

1. INTRODUCTION

The setup of a virtual laboratory is carried out through this
project to study the aeroelastic problems. In order to do so,
it is required to use a set of MATLAB functions to conduct
the analysis for different aeroelastic cases. These cases include
divergence conditions, study of flutter, unsteady aerodynamics,
etc.
The structural code requirement uses 3D FEM code to obtain
effective properties where the MATLAB implementation is
based on beam’s FEM algorithm. The part of the steady
aerodynamics condition and unsteady aerodynamics require
the MATLAB code implementation of lifting-line solution by
horseshoe element and Theodorsen’s model respectively. The
third part of this project is related to coupling that is carried
out through transfer matrices. These matrices transfer the
structural output (displacement vector) to aerodynamic input
(angle of attack) and aerodynamic output (lift distribution) to
structural input (force vector). Once computed the previous
requirements successfully, a solver computes the divergence
speed, modes and flutter speed.

2. PROBLEM DEFINITION

The definition of the problem relies on 3D FEM analysis
of a wing that goes through experimental structural tests. The
airfoil chosen for the computation of this wing is NACA0012.
The material properties are shown on the Table 1.

Initially the chord of NACA0012 is considered 1 and the
span is b=5c. This value of chord changes along the study of
this problem in order to observe the influence of aspect ratio.

MATERIAL PROPERTIES
Material ρ [kg ·m−3] E [GPa] ν

Skin 2000 9 0.27
Spars 1800 1500 0.30

Stringers 2300 70 0.35

TABLE 1: Wing’s Material properties

3. METHODOLOGY

A. Structural analysis

The goal of this first structural analysis is to obtain the shear
centre position Xsc, the torsional stiffness GJ and the bending
stiffness EI of a NACA0012 airfoil. The model of the airfoil
is formed by hexahedral elements that gives more accuracy
than using tetrahedras.
The starting point of the finite element code is to use a code
already build that simulates what would be an experimental
analysis of a wing, it has as input the loads where the
forces will be applied and the magnitude. It also reads the
displacement measure locations, the places of interest to locate
the sensors in order to measure the displacement.
This FEM Analysis assumes small displacements and defor-
mations, that implies also small angles and linear elasticity.
The second hypothesis is that the effective response can be
described by the elemental beam theory:{

T
M

}
=

[
GJ 0
0 EI

]
︸ ︷︷ ︸

[E]

{
dθ/dy
d2h/dy2

}
(1)

Here, torsion is related to the twist change although the span
of the wing and the bending moment is related to the second
derivative of the wing deflection. Both parameters, as the
section profile is the same, will be assumed constant along
the wing span and assumed uncoupled. This hypothesis will
be verified in Section 4.
Since in this problem loads are being imposed and the resulting
displacements are measured, the constitutive relation can be
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written as: {
θ̄′

h̄′′

}
=

[
S11 S12

S21 S22

]
︸ ︷︷ ︸

[E]−1

{
T
M

}
(2)

This constitutive relation allows the user to apply pure tor-
sional load (M = 0) and obtain the uncoupled effect on
the twist angle and the wing deflection. It also allows the
application of a pure bending load (T = 0) to obtain the rest
of the coefficients.
Applying pure torsional load (M = 0) it is easy to compute:

S11 = θ̄′/T, S21 = h̄′′/T (3)

Instead of a bending load, a pure shear load (M = 0, M’ =
-Q) is be applied:

S12 = θ̄′/M = −θ̄′′/Q, S22 = h̄′′/M = −h̄′′′/Q (4)

It is important to recall that the shear and bending are related
so that the derivative of the bending is the shear.
To do so, the torsional load will be applied imposing two
forces with the same magnitude in opposite directions sepa-
rated by a certain distance. A pure shear load means a load
in a specific point in a beam that does not cause torsion. This
specific point is the shear centre calculated previously.
The program has a particularity that prevents the application
of loads at any point and they need to be applied at prede-
fined nodes. In order to apply forces at non existing nodes,
the methodology will be the following: apply a force in a
specific node accompanied by a torsional moment (same load
in opposite directions in separate nodes). This is useful to
compute the shear centre.
The points selected by the user to apply forces or measure
displacements cannot be chosen randomly. The element that
carries the structural resistance is spar because skin is too thin
to have a resistance. Therefore, the point where the forces
are applied are located at the spars. The measurement points
will be enough to have a accurate value on the rotation and
deflection.
Once the torsional stiffness GJ and the bending stiffness are
obtained, EI the next step is to perform another numerical
analysis in order to define the section properties. To do so,
the wing section is discretized in 224 elements contained in
the following matrices:
• Nodal coordinates [x]: this matrix contains the x, y, z

coordinates of each node.
• Nodal connectivity [Tn]: This matrix tells us which

element is connected to which node.
• Material properties [m]: this matrix contain the density

of each material.
• Material’s connectivity [Tm]: This matrix tells us which

element is connected to which material.
The determination of the section properties is given by the
following procedure:

1) Obtain the coordinates and the material of each element.
2) Determine the centroid coordinates of each element.
3) Determine the area of each element.
With this information, it is easy to compute:

1) The mass per unit length

m =
∑
e

ρ[e]A[e] (5)

2) The centre of mass

xcm =
1

m

∑
x[e]ρ[e]A[e] (6)

3) The inertia about the shear centre per unit length.

Isc =
∑
e

(
x[e] − xsc

)2

ρ[e]A[e] (7)

The next step is to discretize the wing into beam elements as
shown in Figure 1.

Fig. 1: 1D Beam

With this discretization, the unknowns will be located at
each node. Imposing equilibrium in each element the equilib-
rium equation can be written as:[

M[i]
]{

ü[i]
}

+
[
K[i]

]{
u[i]
}

=
{

f [i]
}

(8)

Where {u} contains the 3 defined degrees of freedom of the
problem (the elastic twist θ, deflection h and rotation about
the x-axis γ).

{
u[i]
}

=



θ(i)

h(i)

γ(i)

θ(i+1)

h(i+1)

γ(i+1)


;
{

f [i]
}

=



T
[i]
1

F
[i]
1

M
[i]
1

T
[i]
2

F
[i]
2

M
[i]
2


(9)

There will be a Torsion T , a shear load F and a Bending
moment M associated to each degree of freedom. To solve
the system, it is necessary to compute the stiffness matrix
and the mass matrix. The expression of the stiffness matrix
is formed by two sub-matrices, one containing the torsional
stiffness (computed previously) and the other containing the
effective bending stiffness. The mass matrix is computed using
the lumped approach with the values computed in the previous
analysis.
Given the element stiffness matrix and mass matrices [K[i]]
and [M[i]], respectively, the global stiffness and mass matrices
can be calculated using the developed MATLAB algorithm.
Finally, the force vector will be discussed in the aerodynamic
part. As shown in Figure 2, a constant lift distribution for each
beam element ¯̀[i] and a constant torsion moment distribution
m̄

[i]
sc will be assumed.
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Fig. 2: Element force

Similarly to process followed in mass, the force will be
separated into two load points, this relation is given in the
following matrix:

{
f [i]
}

=
l[i]

2


0 1
1 0

l[i]/6 0
0 1
1 0

−l[i]/6 0


{ ¯̀[i]

m̄
[i]
sc

}
(10)

The half of the contribution is given to each node by mul-
tiplying the beam length and dividing by 3. This is, in fact,
the interpolation of coupling between the aerodynamic and the
structural part.

B. Aerodynamic analysis
The aerodynamic analysis requires a couple of pre-processes

in the computation. The first step is the dicretization of the
panel to develop a coherent relation with beam element from
the structural analysis. The association between the structural
and aerodynamic degrees of freedom DoF is implemented.
The unknown variables in the aerodynamic analysis are the
vortex intensities Γ[i] shown of the following figure 3 as vortex
lines.

Fig. 3: Horseshoe element [i]: Vortex lines

The Horseshoe element refers to the effect of the vorticity
from node 4 to 1 is considered far from the body, which leads
this parameter to be null. The distance of the contribution
of this vorticity, from the section’s leading edge, is big
enough(≈20c) to neglect its effect. Therefore, the horseshoe
element considers the other three vorticities and places the
vortex at c/4, the aerodynamic centre. The Kutta condition is
applied at the collocation point ’x’ shown on figure 3, at 3c/4
of the section.

The numerical analysis is based on the discretization of the
panel obtaining the effective area of each discretized section or
panel S[i], a vertical normal vector for each panel n[i] and the
coordinates of the collocation point x[i]. The intensity of the
vortex lines come from applying the Kutta condition (11) at
each collocation point. As the U∞ is deviated at a certain angle
(elastic twist, θi), the projection of the corresponding axis is
calculated and this links the structural part and aerodynamic
part. n∑

j=1

(
v

[j]
12 + v

[j]
23 + v

[j]
34

)∣∣∣∣∣∣
x=x[i]

+ U∞

 · n[i] = 0 (11)

Induced velocity at point x due to a vortex segment from
xj to xk with vorticity Γ[i] is calculated as follows:

v
[i]
jk(x) =

Γ[i]

4π

rj × rk

‖rj × rk‖2

(
l[i] · rj
rj

− l[i] · rk
rk

)
(12)

rj = x− xj ; l[i] = xk − xj (13)

The system of equations is:

[A]{Γ} = −U∞{α} (14)

Where [A] is the aerodynamic influence coefficients matrix:

Aij =
(
v

[j]
12

(
x[i]
)

+ v
[j]
23

(
x[i]
)

+ v
[j]
34

(
x[i]
))∣∣∣

Γ[i]=1
· n[i]

(15)
Finally, the total lift as a function of {α} and U∞ on the

element is:

{L} = −ρ∞U2
∞[S][A]−1{α} (16)

Where [S] is:

[S] =

 S[1] 0
. . .

0 S[n]

 (17)

The expression of lift can also be built as a function of q∞
instead of U∞ because it is the main variable that the problem
is looking for. In that case, lift would be:

{L} = −2q∞[S][A]−1{α} (18)

C. System’s coupling

The study of coupling effect in the system requires the as-
sembly of three vectors. The first vector is based of expression
the lift vector {L} in terms of the structural unknown vector
{u}. This is obtained finding the interpolation matrix between
{α} and {u}. For the expression of Lift, the positions that
contain θ in the displacement vector, is related to α.
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
α[1]

α[2]

...
α[n]

 =


I I 0 . . . 0 0
0 I I · · · 0 0

...
. . .

...
0 0 0 · · · I I





u(1)

u(2)

u(3)

...
u(n)

u(n+1)


Substituting the previous expression of α to the expression

of Lift obtained in equation (16), the vector of lift is computed
for coupling system:

{L} = −ρ∞U2
∞[S][A]−1[I]{u} (19)

The second vector has the average value of constant lift
distribution l

[i]
and the effective torsional moment contribution

about shear centre m[i]
sc in terms of L[i] (the total lift of each

panel). [ ¯̀[i]

m̄
[i]
sc

]
=

1

l[i]

[
1
e

]
L[i] (20)

where e is:

e = xsc − xac (21)

The element force assembly matrix is computed inserting
the expression (20) into the expression (10). This way, the
force of two nodes of each element is related. Now that, all the
equations are sorted, the coupling effect between structural and
aerodynamic part is obtained simply computing the following
general equation of Force where each couple of Q[i][i] in
column belongs to a specific element:



F(1)

F(2)

F(3)

...
F(n)

F(n+1)


=

1

2



Q
[1]
1 0 · · · 0

Q
[1]
2 Q

[2]
1 · · · 0

0 Q
[2]
2 · · · 0

...
...

. . .
...

0 0 · · · Q
[n]
1

0 0 · · · Q
[n]
2




L[1]

L[2]

...
L[n]


(22)

Therefore, final expression of Force is:

{F(u)} = −1

2
ρ∞U

2
∞[Q][S][A]−1[I]︸ ︷︷ ︸
q∞[Ka]

{u} (23)

D. Flutter analysis
One of the most extensively used in aerodynamic models,

capable to explain flutter induced instabilities, was developed
by Theodorsen back in 1935. The goal of this section is
to introduce the flutter condition in this dynamic system
which means finding the appropriate set of solutions for the
elastic twist and the plunch. Typically, the solutions have a
harmonic shape. There are two unknowns for two equations
that equalized to zero the real and the imaginary part of
the determinant. The involvement of aerodynamics lead to a

non linear equation to solve a numerical approach, Newton
Raphson method.
The aerodynamic expressions for the lift and moment are
given by a Theodorsen function that accounts for attenuation
phenomena in the lift and moment due to the wake vorticity.
It is a non-dimensional parameter that is defined by a H
function and a reduced frequency which is a non dimensional
frequency:

C(κ) =
H

(2)
1 (κ)

H
(2)
1 (κ) + iH

(2)
0 (κ)

, κ =
ωb

U∞
(24)

Instead of working with previous expression, the following
one has already been developed:

C(κ) = 1− 0.165

1− i 0.0455
k

− 0.335

1− i 0.3
k

(25)

That can be expressed as: C(κ) = F (κ) + iG(κ)

F (κ) =
0.5κ4 + 0.0765κ2 + 1.8632× 10−4

κ4 + 0.0921κ2 + 1.8632× 10−4
(26)

G(κ) =
−0.1080κ3 − 8.8374× 10−4κ

κ4 + 0.0921κ2 + 1.8632× 10−4
(27)

Introducing this expression in our system of equations one can
get:{
m

[i]
sc

`[i]

}
= πρ∞b

2U2
∞

([
ÂR(κ)

]
+ i
[
ÂI(κ)

])
[I I]

{
û(i)

û(i+1)

}
(28)

And the element force vector becomes:{
f [i]
}

= b

[
Q̂

[i]
1

Q̂
[i]
2

]{
m

[i]
sc

`[i]

}
(29)

It is assumed that the degree of freedom referring to the
vertical displacement, h, is non-dimensionalized by the half-
chord,b , when writing û[i]. Additionally, to make the units
consistent, all equations referring to forces are multiplied by
b. In practice, this means that ˆl[i] = l[i]/b in the definition of Q̂
and that rows and columns of both [K] and [M] corresponding
to the second degree of freedom of each node, must be
multiplied by b.
Doing algebra manipulations and applying the boundary con-
ditions the system yields:([

K̂LL

]−1 [
M̂LL

]
+

1

µκ2

[
K̂LL

]−1 [
F̂LL(κ)

]
︸ ︷︷ ︸

[D̂LL(κ)]

−λ[1]){û} = {0}

And the flutter condition is given by:

det
([

D̂ (κF )
]
− λF [1]

)
= 0 (30)

E. Code development
The code developed to perform this structural analysis has

the following structure:
1) Inputs and test set up:

• Material data: ρm, Em, νm.
• Geometrical data: FEM mesh, c, AR;
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2) 3D FEM Analysis.
a) Find the shear centre.
b) Apply pure torsional load.
c) apply pure shear load.
d) Compute GJ and EI .

3) 2D FEM Section.
a) Compute the section properties: Isc, m, xcm.

4) Element mass and element stiffness matrix computation.
5) Beam elements discretization.
6) Horseshoe elements discretization.
7) Aerodynamic influence coefficients.
8) System coupling.
9) Final calculations and print results.

4. RESULTS

The results of the first structural analysis are not very accu-
rate, this is due to the coarse mesh used for our computational
cost limitations. It has been checked that the memory required
grows exponentially with the number or elements used.
To get the shear centre position Xsc, the torsional stiffness GJ
and the bending stiffness EI of the airfoil some loads have
been applied. The first load applied is a pure torsional load.
It has been imposed two forces with the same magnitude in
opposite directions separated a certain distance, the selected
points are the location of the ribs, 0.25*c and 0.6*c, both at
the section located at the span. Figure 4 shows the undeformed
wing before applying the forces.

Fig. 4: Undeformed wing

Figure 5 shows the deformed shape of a section when
applying torsional load of a magnitude F = 24522 N. It’s
possible to appreciate the deformation done by the forces
applied in opposite directions

Fig. 5: Deformed wing

Additionally, Figure 6 and Figure 7 shows the elastic twist
and the deflection of the wing along the span. It can be seen
that, as expected, both varies linearly. In addition, the twist
angle is equal to zero at the root of the wing which validates
the code.

Fig. 6: Twist along the span

Fig. 7: Deflection along the wing

The firsts constitutive relation terms can be obtained by
doing the first derivative of the twist and the deflection:

S11 = θ̄′ = 3.1408e− 06; (31)

S21 = h̄′′ = 2.2423e− 08; (32)

The next step was to obtain the shear centre Applying a force
in a specific node accompanied by a torsional moment. Results
are shown the the Figure 8, it shows the twist angle distribution
when applying different forces, from this plot the shear centre
has been obtained by interpolating and finding the point where
the twist is equal to zero. The point found is:

xsc = 0.3521
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Fig. 8: Twist along the chord

The last coefficients have been obtained applying pure shear
load, to do so, a force has been imposed at the shear centre,
it can be checked that the twist is at the order of 10−8 which
is practically zero. Figure 9 shows the deformed wing when
applying the force.

Fig. 9: Deformed wing

The last two constitutive relation terms can be obtained by
doing the first derivative of the twist and the second derivative
of the deflection:

S12 = θ̄′ = −5.3501e− 09; (33)

S22 = h̄′′ = 1.1626e− 06; (34)

With all the constitutive terms the E matrix is obtained by
doing the inverse:

[E] =

[
3.18e+ 05 1.46e+ 03
−6.14e+ 03 8.60e+ 05

]
(35)

And, the torsional stiffness GJ and the bending stiffness EI:

GJ = 318KNm2

EI = 860KNm2

It is observed that the hypothesis done previously that there is
no coupling between the torsion (T) and the bending moment
(M), the order of magnitude of the coupling terms are low but
not enough to be considered negligible.
Figure 10 shows the wing section discretized in 224 element
that corresponds with a different colour, each element contains
5 nodes. The blue dot represents the position of the canter of
mass. The properties of the section are described in the Table
2.

Fig. 10: Discretized wing section

Total mass Mass center Inertia
28.1590 Kg x = 0.46 m Ix = 2.19Kgm2

y = 0 m Iy = 0
z = 0 m Iz = 0.05kgm2

TABLE 2: Section properties

As explained in section 3.2, the aim of the aerodynamic part
of this project is to obtain Lift force following the series of
equations shown in the same section. In order to obtain this
force, it is required to compute the matrices [A] and [S] and
define the parameters U∞ and ρ.
For the calculation of the coefficients of the matrix [A]
it is considered that the segment 4-1 is far away and, as
a consequence, its induced velocity is negligible. As there
are three different segments to work with, according to the
Horseshoe element, xj and xk take different values depending
on the induced velocity of the segment in question. Applying
this criteria, the following result([A] matrix (4) computed for 5
elements) is obtained. It can be observed that for each column
and row of the matrix [A], the values change. The diagonal
terms refer to the data of the same element. The matrix [S]
(36) is also computed for 5 elements in order to make it
computationally compatible with [A]. Finally, Lift force is
obtained for each element applying the equation (16).

[A] =


−0.768 0.163 0.026 0.010 0.005
0.163 −0.768 0.163 0.026 0.010
0.026 0.163 −0.768 0.163 0.026
0.010 0.026 0.163 −0.768 0.163
0.005 0.010 0.026 0.163 −0.768



[S] =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 (36)

Once the relevant parameters and matrices are computed,
the study of the problem takes another step forward and leads
to the data that defines the eigenvalues and eigenvectors. The
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matrices computed during the computational process, lead
to the determination of divergence condition which is one
of the aims targeted in this project. Since the matrices [K],
[Q], [S], [A] and [I] are known, the matrix [Ka] can be
determined without further complication. The expression of
{F(u)}, equation (23) is easily calculated as a function of q∞
and {u} is the displacement vector(unknown). As the problem
is being resolved in homogeneous approach, the right side of
the equation (23) is zero. The first approach to solve this part
is to remove the fixed degrees of freedom (in this case the first
three) which belong to the first three rows and the first three
columns of [K] and [Ka]. The results auto-values correspond
to -1/q∞.
Using the modes of the auto-values that are not nulls, the
divergence velocity is calculated through the dynamic pres-
sure: qD = -1/L(2(n+1)) where n is the number of elements
or panels. The values of the divergence speed are stored in L
and the order goes from the smallest value to biggest value in
negative. The smallest value is the one that marks the minor
divergence velocity in the vector of L. The dynamic pressure
is:

qD = 9.962 · 105Pa

Using the following expression, the divergence velocity is
calculated:

q∞ =
1

2
ρ∞U

2
∞

DivergenceVelocity = 1.2625 · 103m/s

The results of the eigenvectors and eigenvalues are ordered
in a specific way as seen in the case of divergence speed.
Usually, these values go from the highest to lowest. The
exception happens when there are zeros and they are relocated
to the first positions, because they are singular modes of the
matrix, gathering the real numbers together. In this problem,
due to the type of aerodynamic loads (influenced by just
torsional load) and structurally, the torsion and flexion are
uncoupled which means that the degrees of freedom related
to flexion are singular. This explains the resulting matrix with
2/3 of columns of zeros.
The autovector stores different modes in column where the
twist θ, deflexion h and rotation γ are grouped in this order
(the first one is torsion and the last two are flexion).
However, the first five modes are represented on the Figure
11. The eigenvector of twist, first degree of freedom, is
plotted as a function of normalized span b. As observed, the
mode 1 is uniformly distributed while the rest of the modes
follow a sinus or cosine function. As the Figure shows the
different modes of deformed wing are coherent with the type
of aerodynamic loads applied. There are sinusoidal modes
because it is like the decomposition in Fourier series of
the degrees of freedom or rotation. The higher order modes
oscillate more than lower order modes. In order to fulfil the
boundary condition y=o, a zero has been inserted in the first
position.

Fig. 11: Modes of the DoF 1

The Figure 12 shows the second degree of freedom that
indicates deflexion and follows the same criteria than the first
degree of freedom.

Fig. 12: Modes of the DoF 2

Finally the figure 13 shows the third degree of freedom that
is linked to the rotation about x-axis.

Fig. 13: Modes of the DoF 3
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The following Figure 14 is the result of a test ran for
different aspect ratio of the wing. By means of observation, it
can be stated that the divergence speed decreases as the aspect
ratio increases.

Fig. 14: Divergence speed vs Aspect Ratio

The computation of torsional force T, shear load F and bend-
ing moment M have been also carried out. Their behaviour
along the wing span is shown on the Figure 15, Figure 16
and Figure 17. The torsional force and shear load share the
progress along the non-dimensionalized span, the only differ-
ence is their order of magnitude. The last figure of bending
moment grows towards negative values as it approaches the
tip of the wing.

Fig. 15: Torsional Force

Fig. 16: Shear Load

Fig. 17: Bending Moment

5. CONCLUSIONS

This report has studied the aeroelastic problem by means of
a set of functions in MATLAB. The cases include divergence
conditions, theoretical study of flutter, unsteady aerodynamics,
etc.
To perform the analysis a 3D FEM code has been used to
obtain some of the needed parameters for the future study or
the divergence condition. During the process, it is seen that
there is a clear coupling between the torsional load and the
bending load. The last part of this project has been related
to the coupling that is carried out through transfer matrices.
These matrices transfer the structural output (displacement
vector) to aerodynamic input (angle of attack) and aerody-
namic output (lift distribution) to structural input (force vec-
tor). Once computed the previous requirements successfully,
a solver computes the divergence speed, modes and flutter
speed.
Finally, it is studied that the Finite Element Code is more
accurate for large Aspect Ratio than smaller ones because
of the use of Euler-Bernoulli approach. Also, it has been
observed that, for future analysis or real wings it’s convenient
to have low aspect ratios if the divergence condition wants to
be avoided.
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Project Aeroelasticity: 

Figure 1: NACA0012 air foil experiment that will be analysed in this project. 
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This is an aero elastic study for a clamped-free straight panel with a constant NACA0012 
airfoil section done with a setup of a virtual laboratory. The main goal is to implement a set of 
Mat lab functions to perform different kinds of aero elastic analysis, as the flutter study, the 
divergence condition and effective stiffness. 

To realise this study, a Finite Element code (FEM) is implemented to analyse the effective 
structural properties of the wing. 
The idea is to use it has a black box in order to simulate an experimental analysis. Commonly, 
loads are putted at different points of the wing and with known inputs the displacement at given 
points are measured and recorded. 
So to simulate this experiment the finite element code is used.  The inputs are the loads and the 
displacement measure location. Then introducing it in the finite element solver the outputs that 
are the displacement measure at the reading points defined are obtained. 

To this end, the study is separated in 3parts: Regarding the structure, a 3D FEM code is used to 
obtain the effective properties. Considering the wing as a flat plate and implementing the 
beam’s FEM algorithm the shear centre, the effective torsional stiffness and the effective 
bending stiffness is found. Then for steady aerodynamics the lifting-line solution by horseshoe 
elements is implemented, and for unsteady aerodynamics the Theodorsen’s model is 
implemented and a flutter study is made. 

After a coupling between both is done, by implementing the transfer matrices: from the 
structures output (displacements vector) to the aerodynamics input (angle of attack), and then 
from the aerodynamics output (lift distribution) to structures input (force vector). 

Finally the analysis results of this clamped-free straight panel with a constant NACA0012 airfoil 
section are discussed. That principally are: 
- Divergence speed for different wing aspect ratios.
- First modes associated to divergence conditions for different aspect ratios.
- Stability plots for flutter speed.
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3D FEM Analysis, experimental structural test: 
To simulate a real experiment, a code where a set of coordinate are defined in which the 
measurement are made and a set of coordinates where we apply the loads is implemented.  

The inputs are the loads and the displacement measure location. Then introducing it in the finite 
element solver, the outputs that are the displacement measure at the reading points defined 
are obtained. 
With that information, the shear centre of the airfoil section, the torsional stiffness and the 
bending stiffness is obtained. 

Assumptions: 

• Small displacements and deformations that implies small angles and linear elasticity.

• Effective response of the flat surface described by elemental beam theory.

{
𝑇

𝑀
} = [

𝐺𝐽⃑⃑⃑⃑ 

0

0

𝐸𝐼⃑⃑⃑⃑ ] = {
𝑑𝜃/𝑑𝑦

𝑑2ℎ/𝑑𝑦2} 

[𝐸] = [
𝐺𝐽⃑⃑⃑⃑ 

0

0

𝐸𝐼⃑⃑⃑⃑ ] 

(Eq.1) 
The torsion is related to twist derivative through this torsional stiffness. The bending moment 
M is related to the second derivative of the deflection of the wing through this bending 
stiffness and is assumed constant thought out to the whole wing.  

• This both phenomenon have to be uncoupled.

It should be verified if this uncoupled hypothesis can be reasonable made. There is a composed 
structure where the section have different elements with different materials properties. So the 
torsion and bending moment should be strictly uncoupled. 
To guarantee it, the following constitutive matrix is used: 

{
𝜃′⃑⃑  ⃑

ℎ′′⃑⃑⃑⃑ = [
𝑆11

𝑆21

𝑆12

𝑆22
] {

𝑇

𝑀
}} = [𝐸]−1 = {

𝑇

𝑀
} 

(Eq.2) 
A function that calculus the deflection in different points of the wing is created. Also a set of 
coordinates along the wing in a vector, which are the points where the loads are applied. 
First, a pure torsional load forces (M=0) is applied, by applying 2 loads with the same 
magnitude in opposite directions, to get S11 and S21. 

𝑆11 = 𝜃 ′/𝑇 

𝑆21 = ℎ′′/𝑇⃑⃑⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  
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Image 2: Twist angle for a pure torsion. 
Image 3: Deflection of the wing for a pure 

torsion. 

Secondly a shear load is applied in the shear centre xsc to not cause any torsion (is related with 
bending T=0, M’=-Q) in order to find S12 an S22 that are defined as follows: 

𝑆12 = 𝜃/⃑⃑⃑⃑ 𝑄

𝑆22 =
ℎ′′⃑⃑ ⃑⃑  

𝑀
= −

ℎ′′′⃑⃑ ⃑⃑  ⃑

𝑄

Image 4: Twist angle for a pure bending 

moment. 
Image 5: Deflection for a pure bending 

moment. 

Then the shear centre needs to be found. To determine it, a force is applied and it is moved 
between the two spars in order to find the point where no matter what force causes the wing, 
there is only to bending but not twist. So to determine the shear centre the following equation 
have to be solve:  

𝑥𝑠𝑐 →
𝜕𝜃

𝜕𝑦
= 0 

(Eq1.3) 
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Image 5: Plot of the twist angle θ for each defined point measure. 

Thanks to FEM solver we found the shear centre position in function of the chord: 
𝑥𝑠𝑐 = 0,33064 ∗ 𝐶 

Finally, we found for this matrix E-1 expressed previously in equation 2: 

2D FEM Analysis, Section properties: 
In this finite element analysis integrals over the section was done in order to obtain the section 

properties. There is a NACA0012 profile file (Mat Lab script file) in which there are the nodal 

coordinates, the nodal connectivity’s, and the material connectivity’s of the section of this case. 

So a 2D FEM script is computed that allows to obtain this section properties thanks to this 

following formulas: 

𝑁𝑜𝑑𝑎𝑙 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠  [𝑥] = [

… … …
𝑥(𝑖) 𝑦(𝑖) 𝑧(𝑖)

… … …
] = [

…
𝑥(𝑖)

…
] 

𝑁𝑜𝑑𝑎𝑙 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑖𝑒𝑠  [𝑇𝑛] = [

… … … …
(𝑖)1

𝑒 (𝑖)2
𝑒 (𝑖)3

𝑒 (𝑖)4
𝑒

… … … …
] 

𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑖𝑒𝑠   [𝑇𝑚] = [

…
(𝑚)(𝑒)

…
] 

(Eq1.4) 

A function is implemented to select the vectors data of each coordinate x, y and z, and the 

connections between the nodes.  
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The properties material matrix is used and the data are separated in order to calculate the 

position and the number of elements and nodes for each element (that is 4 for each one). 

With this 4 nodes the centre of each element is calculated. 

Then the material properties matrix is defined as a vector: 

𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠  [𝑚] = [

…
𝜌(𝑚)

…
] 

(Eq1.5) 
Whit this matrix the properties of each section are determined. The nodal coordinates give the 
coordinates of each node, (is a finite element discretization of the section). This mesh is defined 
by assigning the coordinates of each points. Then the number of the nodes are assigned and in 
order to connect it to each element the vertices of each element are implemented 
(corresponding to each row by identifying the numbers of the corresponding nodes). 

The same procedure is done for material properties:  a matrix with the different material 
properties is defined, here there are 3 different materials so the obtained matrix have 3 rows. 
And then a vector is defined, assigning at each element corresponding to each row of this vector, 
the index of the material corresponding to this element.  

To obtain the properties for each element [e] those following algorithms are used: 

𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠:  𝑥𝑗
[𝑒]

= [𝑥]([𝑇𝑚](𝑒,𝑗)) , 𝑗 = 1,… ,4

𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙:  𝜌[𝑒] = [𝑚]([𝑇𝑚](𝑒))

𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠:  𝑥[𝑒] =
1

4
∑𝑥𝑗

[𝑒]

4

𝑗=1

𝐴𝑟𝑒𝑎:   𝐴[𝑒] =
1

2
(𝑎. 𝑏 + 𝑐. 𝑑) 

𝑎 = 𝑥1
[𝑒]

− 𝑥4
[𝑒]

 ;  𝑏 = 𝑥1
[𝑒]

− 𝑥2
[𝑒]

𝑐 = 𝑥3
[𝑒]

− 𝑥2
[𝑒]

 ;   𝑑 = 𝑥4
[𝑒]

− 𝑥3
[𝑒]

(Eq1.6) 

Once determined for each element the coordinates and the material, a function to determine 
the centre of each element is defined. Thanks to the vectors a, b, c and d, a Mat lab function is 
used to calculus the area of each element. 

By ordering this data a matrix “elem”  is created where: 
-the first column is the x position of the element centre
-the second column is the z position of the element centre
-the thirds column is the area of each element
-the four column is the total mass per unit length of each element

A similar matrix is obtained for properties of each element that gives the kind of material (1, 2, 
or 3 depending on which material), the density, the young module and the Poisson module for 
each element. 
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Finally by summing the columns of the element vectors, the total mass, the centre of mass of 
the full profile in x and z coordinates, and the inertia using the shear centre founded previously 
are determined. 

The mass per unit length is computed, also the centre of mass and the inertia along the shear 
centre per unit length making an algorithm with this following equations: 

𝑇𝑜𝑡𝑎𝑙 𝑚𝑎𝑠𝑠 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑙𝑒𝑛𝑔𝑡ℎ:  𝑚 = ∑𝜌[𝑒]𝐴[𝑒]

𝑒

 

𝐶𝑒𝑛𝑡𝑒𝑟 𝑜𝑓 𝑚𝑎𝑠𝑠:  𝑥𝑐𝑚 =
1

𝑚
∑𝑥[𝑒]𝜌[𝑒]𝐴[𝑒]

𝑒

 

𝐼𝑛𝑒𝑟𝑡𝑖𝑎 𝑜𝑓 𝑠ℎ𝑒𝑎𝑟 𝑐𝑒𝑛𝑡𝑒𝑟 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑙𝑒𝑛𝑔𝑡ℎ:  𝐼𝑠𝑐 = ∑(𝑥[𝑒] − 𝑥𝑠𝑐)
2

𝑒

𝜌[𝑒]𝐴[𝑒] 

(Eq1.7) 
The following plot shows the different properties of the 3 materials that compose this wing 
profile. It is clearly differentiate by colours the stringers in brown, the spars in green and the 
skin in blue. 

Image 6: Plot showing the different section properties of the wing. 

1D Beam analysis: 
The goal of this part is to obtain the stiffness and the mass matrices, assuming that the wing is 

discretised by beam elements. 

a) Element matrices:
Imposing an element equilibrium, a system as follows is obtained: 

[𝑀(𝑖)]{𝑢(𝑖)} + [𝑘(𝑖)]{𝑢(𝑖)} = {𝑓(𝑖)} 
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{𝑢(𝑖)} =

{

𝜃(𝑖)

ℎ(𝑖)

𝛾(𝑖)

𝜃(𝑖+1)

ℎ(𝑖+1)

𝛾(𝑖+1)}

; {𝑓(𝑖)} =

{

𝑇1
(𝑖)

𝐹1
(𝑖)

𝑀1
(𝑖)

𝑇2
(𝑖)

𝐹2
(𝑖)

𝑀2
(𝑖)

}
(Eq1.8) 

There are here 3 degrees of freedom for each node associated to the elastic twist θ(i), the 

deflection h(i) and the first derivative of the deflection (according to beams theory) ϒ(i) that 

corresponds to the section rotation about the x axis. 

When a certain deflection is applied, the section of the wing will also rotate a certain angle. So 

in this case the elastic axis is always perpendicular to the section of the beam (that works more 

accurate for large aspect ratio beams). 

Associated to this displacement of degrees of freedom, the torsion, the shear load and the 

bending moment is obtained. 

This following expression is used to determine the stiffness matrix K(i) and the mass matrix 

(lumped) M(i)  per unit length: 

[𝐾(𝑖)] =
𝐺𝐽⃑⃑⃑⃑ 

𝑙(𝑖)

[

1 0 0 −1 0 0
0 0 0 0 0 0
0 0 0 0 0 0

−1 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0]

+
𝐸𝐼⃑⃑⃑⃑ 

(𝑙(𝑖))3

[

0 0 0 0 0 0

0 12 6𝑙(𝑖) 0 𝐸𝐼⃑⃑⃑⃑ 6𝑙(𝑖)

0 6𝑙(𝑖) 4(𝑙(𝑖))2 0 6𝑙(𝑖) 4(𝑙(𝑖))2

0 0 0 0 0 0

0 𝐸𝐼⃑⃑⃑⃑ −6𝑙(𝑖) 0 𝐸𝐼⃑⃑⃑⃑ −6𝑙(𝑖)

0 6𝑙(𝑖) 4(𝑙(𝑖))2 0 −6𝑙(𝑖) 4(𝑙(𝑖))2]

𝑙(𝑖) = 𝑦(𝑖+1) − 𝑦(𝑖) 

[𝑀(𝑖)] =
𝑙(𝑖)

2

[

𝐼𝑠𝑐 𝑚𝑑 0 0 0 0
𝑚𝑑 𝑚 0 0 0 0
0 0 0 0 0 0
0 0 0 𝐼𝑠𝑐 𝑚𝑑 0
0 0 0 𝑚𝑑 𝑚 0
0 0 0 0 0 0]

;   𝑑 = 𝑥𝑠𝑐 − 𝑥𝑐𝑚 

(Eq1.8) 

b) Matrices assembly:
Then the global mass and stiffness matrices have to be obtained following this matrix assembly 

approach. In this case there are 3 degrees of freedom (DoF) per node, so the total number of 

DoFs is: N=3(n+1). 

𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑠𝑒 𝑔𝑙𝑜𝑏𝑎𝑙 𝑚𝑎𝑡𝑟𝑖𝑐𝑒𝑠:  [𝐾] = [0]𝑁𝑥𝑁  𝑎𝑛𝑑   [𝑀] = [0]𝑁𝑥𝑁  

(Eq1.9) 

The algorithm determine for each element i={1….n}, for each node a={1,2} and for each degree 

of freedom j={1…3}: 

𝑝 = 3(𝑎 − 1) + 𝑗      ;    𝐼 = 3([𝑇𝑛](𝑖,𝑎) − 1) + 𝑗
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(Eq1.10) 

Then for each element node b={1,2} and for each degree of freedom k={1…3}: 

𝑞 = 3(𝑏 − 1) + 𝑘    ;      𝐽 = 3([𝑇𝑛](𝑖,𝑏) − 1) + 𝑘

(Eq1.11) 

Finally the matrices assembly is computed: 

[𝐾](𝐼,𝐽) = [𝐾](𝐼,𝐽) + [𝐾(𝑖)](𝑝,𝑞) 

[𝑀](𝐼,𝐽) = [𝑀](𝐼,𝐽) + [𝑀(𝑖)](𝑝,𝑞) 

(Eq1.12) 

c) Element force vector:
The force vector is related to the aerodynamic part because the load system for aero elastic 

problems come from this aerodynamic part. From the structural part a constant lift distribution 

for each beam element and a constant torsion moment distribution is assumed. And then the 

contribution of the mass in the both point’s loads at each node configuring the element are 

accounted. This relation is given through this matrix: 

{𝑓(𝑖)} =
𝑙(𝑖)

2

[

0 1
1 0

𝑙(𝑖)/6 0
0 1
1 0

−𝑙(𝑖)/6 0]

{
𝑙(𝑖)⃑⃑ ⃑⃑  ⃑

𝑚𝑠𝑐
(𝑖)⃑⃑ ⃑⃑⃑⃑ ⃑⃑ }

(Eq1.13) 

Basically for the lift and torsion moment, half of the contribution to each node by multiplying 

by “l” the beam length and dividing it by 2 are given.  

This is the interpolation or coupling matrix between the aerodynamic and the structural part. 

Aerodynamic, Lifting line surface analysis: 
In this part the discretization panels that correspond to the beam elements from the structural 

analysis are defined. For this numerical analysis it’s important to obtain: 

-Surface area of the element: S[i]

-Normal vector of the element (vertical): n[i]

-Coordinates of collocation points (3/4 length of the element, in the middle): x[i] 

The system that can be used to obtain the unknown, in this case the intensity of the vortex line 

Г[i], comes from applying the Kutta condition at each colocation point: 

(∑(𝑣12
[𝑗]

𝑛

𝑗=1

+𝑣23
[𝑗]

+ 𝑣34
[𝑗]

)𝑋=𝑋[𝑖] + 𝑈∞) . 𝑛[𝑖] = 0

𝐼𝑛𝑑𝑢𝑐𝑒𝑑 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦:   (𝑣12
[𝑗]

+𝑣23
[𝑗]

+ 𝑣34
[𝑗]

)𝑋=𝑋[𝑖]

𝑇𝑜𝑡𝑎𝑙 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦: 𝑈∞ 
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(Eq1.14) 

A small angles approximation is assumed so the freestream velocity is the normal times the 

angle of attack of each section. In our case the angle of attack correspond to the elastic twist 

because is how it  is defines in the aero elastic analysis.  

So this is the link between the structural and the aerodynamic part. 

There is the angle of attack in one hand and through the definition of the lift obtained by solving 

the system described in Eq1.15, it is related to the force vector in the structural analysis. 

An algorithm is implemented to found out the induced velocity at point x due to a vortex 

segment from xj to xk with vorticity Г[i] is: 

𝑣𝑗𝑘
[𝑖]

=
Г[i]

4𝜋

𝑟𝑗𝑥𝑟𝑘

‖𝑟𝑗𝑥𝑟𝑘‖
2 . (

𝑙[𝑖]. 𝑟𝑗

𝑟𝑗
−

𝑙[𝑖]. 𝑟𝑘
𝑟𝑘

) 

𝑟𝑗 = 𝑥 − 𝑥𝑗   ;  𝑙
[𝑖] = 𝑥𝑘 − 𝑥𝑗

(Eq1.15) 

Then the following system of equations where [A] is the aerodynamic influence coefficients 

matrix is found. 

[𝐴]{Г} = −𝑈∞{𝛼} 

[

𝐴11 𝐴12 … 𝐴1𝑛

𝐴21 𝐴22 … …
… … … …

𝐴𝑛1 𝐴𝑛2 … 𝐴𝑛𝑛

] {

Г[1]

Г[2]

…
Г[𝑛]

} = −𝑈∞ {

𝛼[1]

𝛼[2]

…
𝛼[𝑛]

} 

(Eq1.16) 

The coefficients of [A] are obtained by applying this formula, that involve the induce velocity at 

each point:  

𝐴𝑖𝑗 = (𝑣12
[𝑗]

(𝑥[𝑖]) + 𝑣23
[𝑗]

(𝑥[𝑖]) + 𝑣34
[𝑗]

(𝑥[𝑖]))Г[𝑖]=1. 𝑛
[𝑖]

(Eq1.17) 

Then using the lift definition of Eq1.18 the total lift {L} at each panel in terms of the angle of 

attack is found.  

𝑇𝑜𝑡𝑎𝑙 𝑙𝑖𝑓𝑡 𝑜𝑛 𝑡ℎ𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡: 𝐿[𝑖] = 𝜌∞𝑈∞𝑆[𝑖]Г[𝑖]

{𝐿} = −𝜌∞𝑈∞
2[𝑆][𝐴]−1{∝}

(Eq1.18) 

Where [S] is a diagonal matrix involving the plane form surface area of each panel: 

[𝑆] = [
𝑆[1] … 0
… 𝑆[𝑖] …
0 … 𝑆[𝑛]

] 
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System coupling: force vector assemble: 
Finally, what rest to do is the system coupling. In one hand the lift [L] have to be expressed in 

terms of the unknown vector from the structural part {u}. That means finding an interpolation 

matrix between {α} that only the twist angle and {u} that have 3 DoFs are important. The 

relationship comes from the matrix [I]. So for this aerodynamic model the following equation 

have to be solved: 

∝[𝑖]= 𝜃[𝑖] =
1

2
[1 0 0 1 0 0]

{

𝜃(𝑖)

ℎ(𝑖)

𝛾(𝑖)

𝜃(𝑖+1)

ℎ(𝑖+1)

𝛾(𝑖+1)}

= [𝐼 𝐼] {
𝑢(𝑖)

𝑢(𝑖+1)
}

{∝} =  {

𝛼[1]

𝛼[2]

…
𝛼[𝑛]

} = [

𝐼 𝐼 0 … 0 0
0 𝐼 𝐼 … 0 0
… . . . … … … …
0 0 0 … 𝐼 𝐼

]

{

𝑢(1)

𝑢(2)

𝑢(3)

…
𝑢(𝑛)

𝑢(𝑛+1)}

= [𝐼]{𝑢} 

{𝐿} = −𝜌∞𝑈∞
2 [𝑆][𝐴]−1[𝐼]{𝑢}

(Eq1.20) 

Then the force vector is assembled. To do it, the expression defined previously for the element 

force vector, with the effective/average value of the constant distribution in each section 𝑙[𝑖] 

and the effective torsion moment contribution about the shear centre  𝑚𝑠𝑐
[𝑖]

 is recalled. And this 

is related to the total lift L[i] of each panel through this simple expression. 

[
𝑙[𝑖]⃑⃑⃑⃑  ⃑

𝑚𝑠𝑐
[𝑖]⃑⃑ ⃑⃑ ⃑⃑  ⃑] =

1

𝑙[𝑖]
[
1
𝑒
] 𝐿[𝑖]  ,  𝑒 = 𝑥𝑠𝑐 − 𝑥𝑎𝑐  

(Eq1.21) 

After it is introduced into (Eq1.13) defined previously and the element force assembly matrix 

becomes: 

{𝑓(𝑖)} =
𝑙(𝑖)

2

[

0 1
1 0

𝑙(𝑖)/6 0
0 1
1 0

−𝑙(𝑖)/6 0]

1

𝑙(𝑖)
[
1
𝑒
] 𝐿[𝑖] =

1

2

[

0
1

𝑙(𝑖)/6
0
1

−𝑙(𝑖)/6]

𝐿[𝑖] 

(Eq1.22) 

Then the force value at each pair of nodes corresponding to the same element by this 

following expression that depend on the lift of each section can be determined: 

{ 𝐹(𝑖)

𝐹(𝑖+1)
} =

1

2
[
𝑄1

[𝑖]

𝑄2
[𝑖]

] 𝐿[𝑖]
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{

𝐹(1)

𝐹(2)

𝐹(3)

…
𝐹(𝑛)

𝐹(𝑛+1)}

=
1

2

[

𝑄1
[1]

0 … 0

𝑄2
[2]

𝑄1
[2]

… 0

0 𝑄2
[2]

… 0
… … … …

0 0 … 𝑄1
[𝑛]

0 0 … 𝑄2
[𝑛]

]

{

𝐿[1]

𝐿[2]

…
𝐿[𝑛]

} 

(Eq1.23) 

With this final matrix that relate the total force vector to the total lift vector, the final 

expression that gives the coupling between the 2 pars is found. 

{𝐹(𝑢)} = −
1

2
𝜌∞𝑈∞

2 [𝑄][𝑆][𝐴]−1[𝐼]{𝑢} = 𝑞∞[𝐾𝑎]

(Eq1.24) 

In this last expression the aerodynamic pressure qoo (that is constant) can be identified. 

Solver part: Flutter analysis: 
A constant NACA0012 section with different aspect ratios is studied. The divergence speed and 

the different modes associated are obtained solving the model problem to this divergent 

condition.  

Also flutter speed is carried out in order to study the stability in terms of the freestream velocity, 

and to get stability plots for the flutter analysis. 

In order to solve (Eq1.24) the Theodorsen’s aerodynamic model is used. The idea is to non-

dimensionalize the system following a procedure explained in this section. The system have 

several degrees of freedom (depending on the number of elements in the discretization), which 

is not a major issue in terms of the procedure. 

Theodorsen’s aerodynamic model: 

𝑙(𝑦) = 𝜋𝜌∞𝑏2(𝑢∞𝜃̇ − 𝑏𝑎𝜃̈ − ℎ̈) + 2𝜋𝜌∞𝑢∞𝑏𝑐(𝑘)(𝑢∞𝜃 + 𝑏 (
1

2
− 𝑎)𝜃 − ℎ̇̇ )

𝑚𝑠𝑐(𝑦) = −𝜋𝜌∞𝑏3 (𝑢∞ (
1

2
− 𝑎) 𝜃̇ + 𝑏 (

1

8
+ 𝑎2) 𝜃̈ + 𝑎ℎ̈)

+ 2𝜋𝜌∞𝑢∞𝑏2𝑐(𝑘) (𝑎 +
1

2
) (𝑢∞𝜃 + 𝑏 (

1

2
− 𝑎) 𝜃̇ − ℎ̇)

(Eq1.25) 

Where: 𝑏 =
𝑐

2
,   𝑎 =

𝑥𝑠𝑐

𝑏−1
 , 𝑐(𝑘) =

𝐻1
(2)

(𝐾)

𝐻1
(2)

(𝐾)+𝑖𝐻0
(2)

(𝐾)
,   𝐾 =

𝑤𝑏

𝑢∞
: reduced frequency 

For this case the Theodorsen’s function can be approximated as follows: 

𝐶(𝐾) = 1 −
0,165

1 − 𝑖
0,0455

𝑘

−
0,335

1 − 𝑖
0,3
𝑘
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(Eq1.26) 

Then expressing C(K)=F(K)+Ig(k), it is possible to get: 

𝐹(𝐾) =
0,5𝐾4 + 0,0765𝐾2 + 1,8632. 10−4

𝐾4 + 0,0921𝐾2 + 1,8632. 10−4  𝑎𝑛𝑑  𝐺(𝐾) =
−0,1080𝐾3 − 8,8374. 10−4𝐾

𝐾4 + 0,0921𝐾2 + 1,8632. 10−4

(Eq1.27) 

In this case: {
𝑚𝑠𝑐

[𝑖]

𝑙[𝑖]
} = 𝜋𝜌∞𝑏2𝑢∞

2 ([𝐴̂𝑅(𝐾)] + 𝑖[𝐴̂𝐼(𝐾)])[𝐼 𝐼] { 𝑢̂𝑖

𝑢̂(𝑖+1)}

With: 𝐴̂𝑅(𝐾) = 𝐾2 [
1

8
+ 𝑎2 𝑎

𝑎 1
] + 𝐾𝐺(𝐾) [

2𝑎2 −
1

2
2𝑎 + 1

2𝑎 − 1 2
] + 𝐹(𝐾) [

1 + 2𝑎 0
2 0

] 

𝐴̂𝐼(𝐾) = 𝐾 [
𝑎 − 1/2 0

1 0
] − 𝐾𝐹(𝐾) [2𝑎

2 −
1

2
2𝑎 + 1

2𝑎 − 1 2

] + 𝐺(𝐾) [
1 + 2𝑎 0

2 0
] 

 𝐼 = [
1/2 0 0
0 1/2 0

] 

(Eq1.28) 

So the element force vector becomes: {𝑓[𝑖]} = 𝑏 [
𝑄1

[𝑖]̂

𝑄2
[𝑖]̂

]{𝑚𝑠𝑐
[𝑖]

𝑙[𝑖]
}  (Eq1.29) 

With: 𝑄1
[𝑖]̂

=
𝑙[𝑖]

2
[

1 0
0 1
0 𝑙[𝑖]/6

]   , 𝑄2
[𝑖]̂

=
𝑙[𝑖]

2
[

1 0
0 1
0 −𝑙[𝑖]/6

]   ,   𝑙[𝑖] = 𝑙[𝑖]/𝑏 

Therefore: {𝐹} = 𝜋𝜌∞𝑏3𝑢∞
2 [𝑄̂][𝐴̂(𝐾)][𝐼]{𝑢̂}  (Eq1.30) 

And the coupling matrices are defined in this project as follows: 

[𝑄̂] =

[

𝑄̂1
[1]

0 … 0

𝑄̂2
[1]

𝑄̂1
[2]

… 0

0 𝑄̂2
[2]

… 0
… … … …

0 0 … 𝑄̂1
[𝑛]

0 0 … 𝑄̂2
[𝑛]

]

 ,    [𝐼] = [

𝐼 𝐼 0 … 0 0
0 𝐼 𝐼 … 0 0
… . … … … … …
0 0 0 … 𝐼 𝐼

] 

(Eq1.31) 

It is assumed that the degree of freedom referring to the vertical displacement, ℎ, is 

nondimensionalized by the half-chord, 𝑏, when writing 𝑢̂[𝑖] . Additionally, to make the units 

consistent, all equations referring to forces are multiplied by 𝑏. So 𝑙[𝑖] = 𝑙[𝑖]/𝑏  in the definition 

of [𝑄̂] and, rows and columns of both [K] and [M] corresponding to the second degree of 

freedom of each node, must be multiplied by 𝑏. The non-dimensionalization of these matrices 

is done by: 

[𝑀̂] =
1

𝑚𝑏3
[𝐵]𝑇[𝑀][𝐵]  , [𝐾] =

1

𝑚𝑏3𝜔𝜃
2 [𝐵]𝑇[𝐾][𝐵]  , [𝐵] = [

𝑏 … 0
… … …
0 … 0

]   , 𝑏 = [
1 0 0
0 𝑏 0
0 0 1

] 
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(Eq1.32) 

Where 𝜔𝜃
2 = 𝐺𝐽̅̅ ̅/𝐼𝑠𝑐𝑏

2 for instance. Then the system can be expressed as follows:

(𝑚𝑏3𝜔𝜃
2[𝐾] − 𝑚𝑏3𝜔2[𝑀̂]){𝑢̂} = 𝜋𝜌∞𝑏3𝑈∞

2 [𝑄̂][𝐴(𝐾)̂][𝐼]{𝑢̂}

(Eq1.33) 

Dividing everything by 𝜋𝜌∞𝑏3𝑈∞
2  the following equations are obtained:

(
𝑚𝑏3𝜔𝜃

2

𝜋𝜌∞𝑏3𝑈∞
2 [𝐾] −

𝑚𝑏3𝜔2

𝜋𝜌∞𝑏3𝑈∞
2 [𝑀̂] − [𝑄̂][𝐴(𝐾)̂][𝐼]) {𝑢̂} = {0}

(
𝑚

𝜋𝜌∞𝑏2

𝑏2𝜔2

𝑈∞
2

𝜔𝜃
2

𝜔2 [𝐾] −
𝑚

𝜋𝜌∞𝑏2

𝑏2𝜔2

𝑈∞
2 [𝑀̂] − [𝐹̂(𝐾)]) {𝑢̂} = {0} 

(Eq1.34) 

Then, defining: 𝜆 =
𝜔𝜃

2

𝜔2  ,   𝜇 =
𝑚

𝜋𝜌∞𝑏2  , 𝑘 =
𝑏2𝜔2

𝑈∞
2  and after applying the boundary conditions 

(that allows to take out the first 3 rows and columns of all matrices, the resulting system yields: 

([𝐾𝐿𝐿]
−1

[𝑀̂𝐿𝐿] +
1

𝜇𝑘2 [𝐾𝐿𝐿]
−1

[𝐹̂𝐿𝐿(𝐾)] −  𝜆[1]){𝑢̂} = {0}

𝑊ℎ𝑒𝑟𝑒: [𝐷̂𝐿𝐿(𝐾)] = [𝐾𝐿𝐿]
−1

[𝑀̂𝐿𝐿] +
1

𝜇𝑘2 [𝐾𝐿𝐿]
−1

[𝐹̂𝐿𝐿(𝐾)]

(Eq1.35) 

Finally the flutter condition is given by: 𝐝𝐞𝐭([𝑫̂(𝒌𝑭)] − 𝝀𝑭[𝟏]) = 𝟎  (Eq1.36) 

To solve the flutter analysis, first a set of kF is specified. Then for each kF the eigenvalues 𝜆𝐹  of 

𝐷̂(𝑘𝐹) are found. That allows to obtain for each eigenvalues 𝜔𝐹 =
𝜔𝜃

√𝜆𝐹
  (complex valued) 

and 𝑈𝐹 =
𝑏𝑅𝑒(𝜔𝐹)

𝑘𝐹
. Then the modes and KF for which Im(wF)<0 (unstable) are found. Finally the 

limits of the KF obtained are interpolated to found the UF corresponding to flutter boundary. 

Regarding the flutter analysis several modes (or eigenvalues) for each trial kappa are found. 

From all those modes, only in those that may cause instabilities, (have associated non-null 

negative imaginary components of the resulting frequency, wF) are interesting. 

To guess at which kappa range the flutter boundary is found (the point where the imaginary 

component of the frequency changes sign), a sweep from 1e-3 to 1e3 in a logarithmic scale is 

done. This way a huge range in the same computation is cover and the chances of capturing the 

sign change for some modes is increased. 
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Image 8: Modal oscillation in γ for AR=5. 

 

Image 9: Modal oscillation drift in γ for AR=5. 

 

When only one side of the oscillation is plotted, can be seen clearly the different drifts of the 

modes and how as higher the mode higher is the amplitude of the oscillations. 

For the other two degrees of freedom the modes are very similar, with slightly different 

frequencies, and different amplitudes, fort the AR=10 case are higher movements and lower for 

the AR=2 case, they are not presented here because the information they add is not relevant. 
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Conclusion and discussion: 
First the "experimental test" was done and the location of the "shear centre", "inertial bending", 

and the "inertial torsion" was found. 

Then the response the aerodynamic model with the "lifting line" and the "Theodorsen model" 

was analysed in order to found the divergence 

Some checks were made to see how is the distribution of the lift in the lifting-line to verify that 

it is elliptical, and to see what happens when the "aspect ratio" is varied, and finally to see how 

the divergence varies with the "aspect ratio ".  

Results shows that the model diverges with lower speeds when the aspect ratio or the wing size 

is increased, this happens because the structure is the same but the wing is longer, has more 

inertia and so is less stiff. 

Finally, to solve the flatter studied with the Theodorsen model, all the equations were none 

dimensioned in order to have the reduced frequency "k" with which we have found the solution 

later. 

The final results obtained in the steady aerodynamic method look reasonable, how the 
divergence speed is lower for higher aspect ratios, and the absolute values look correct. 
The modes for the theta and h seem also correct, and the plot for the gamma modes seems to 
do estrange things, but looking at the calculations don’t seem to be bad, and so maybe the 
results are ok and it is the real movement of the wing, as it is really small. 
 
The Theodorsen method has caused more trouble, as it is more complex and difficult. The 
equations have been applied the way the guides and classes explained, and the results seem ok, 
giving flutter speeds a bit lower than in the steady case, which is reasonable, and the speed also 
decreases with the aspect ratio. For the case with AR=2 the result is clearly not okay. Also, to 
obtain the results the part of the solving of the equation with D the path taken to do so, the 
method is not the one explained by the teacher in the explanations, but is the one that has given 
us better results so has been done all the possible to get accurate results and is the better we 
have been able to perform in the time we had. 
 
Overall, the behaviour of the wing has been studied and can be obtained some approximations 
of the speeds and situations where flutter can appear, from here the analysis can be further 
expanded by making sure the unsteady aerodynamics approach is correctly calculated, and then 
the shape of the wing and the airfoil may be changed, the shape can be more easily changed in 
the program, because if the airfoil is changed the 3d FEM program may be changed and the 
meshes redone, and this is not easy. 
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1. Introduction

The objective of this assignment is to simulate in MATLAB the setup of a virtual
laboratory to study aeroelastic problems. The setup will simulate a semi-wing of
airfoil NACA0012 inside a wind tunnel. The section and properties are constant, as
seen in Figure 1, and α = 0.

Figure 1: Setup of the experiment and characteristics of the wing studied.

The analysis is done by solving the equilibrium equation (Equation 1) for a set of
panels along the span, treating the wing as a beam.

[M]{ü}+ [K]{u} = {f} (1)

To take into account that the whole wing is a 3D structure, effective properties of
the beam structure are obtained with FEM, and matrices M and K of the beam
structure are obtained with the properties of the wing. To account for the lift of a
whole 3D wing, Prandtl lifting-line surface theory is used to obtain the divergence
speed and the modes, as it can also be applied to a panel division of a beam. For
the unsteady problem, Theodorsen’s unsteady aerodynamic model is used.

The virtual laboratory code has the followuing requirements.

Structures: Use of 3D FEM code to obtain effective properties and MATLAB
implementation of a beam’s FEM algorithm.

Aerodynamics: For steady aerodynamics: MATLAB implementation of lifting-
line solution by horseshoe elements. And for unsteady aerodynamics: MATLAB
implementation of Theodorsen’smodel.
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Coupling: MATLAB implementation of transfer matrices: structures output (dis-
placements vector) to aerodynamics input (angle of attack) and aerodynamics out-
put (lift distribution) to structures input (force vector).

Solvers: Divergence speed + modes and flutter speed.

Results: Obtain the stability plots for flutter, first modes associated to divergence
conditions for different aspect ratios and divergence speed for different wing aspect
ratios for a clamped-free straight panel with a constant NACA0012 airfoil section.
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2. 3D FEM analysis - Experimental structural test

The aim is to obtain the shear center position xsc(y), the torsional stiffness GJ(y)
and the bending stiffness EI(y). For the loading tests, sensors are placed along
the mesh (wing span and chord) with the help of function getNodes, that gets the
closest structure node to a determined point. Equidistant 6 sensor (from 0.1c to 1c)
placements along the span from 1.5m to 4m distance from the root have been chosen
in order to avoid distorted values of the extremes. A 3D FEM solver provided will
be used to get to know the displacements.

Assumptions:

• Small displacements and deformations (small angles and linear elasticity too).

• Effective response can be described by elemental beam theory (Equation 2).{
T
M

}
=

[
GJ 0
0 EI

]{
dθ/dy
d2h/dy2

}
=
[
E
]{ dθ/dy

d2h/dy2

}
(2)

Since it is not assumed that bending are torsion are uncoupled Equation 3 will be
used for the experiment.

{
θ
′

h
′′

}
=

[
S11 S12

S21 S22

]{
T
M

}
=
[
E−1

]{T
M

}
(3)

Loading tests with pure torsional load and pure shear load are performed. The first
one to be performed is the pure torsional load, in order to find the xsc(y), because
it is where the load is applied in the second test.

Figure 2: Pure torsion load. Figure 3: Pure shear load.

To apply a pure torsional load, two forces of equal value but opposite direction are
applied at the wingtip at 0.1c and 0.6c. The elastic axis (xsc(y)) can be obtained
because it will be the point along the chord that will remain at y = 0. S11 and S21

can be obtained too, because when applying a pure torsional load M = 0, so:

S11 = θ
′
/T, S21 = h

′′
/T (4)
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Figure 4: Displacement in different sections obtained when using function polyfit
with the y values of the sensors.

Figure 5: Displacement in different sections obtained with the solver.

Figures 4 and 5 show very similar results. They are the prove that the polynomial
expressions to describe the displacements are well adjusted and it is possible to use
them to obtain the derivatives. This check would be very necessary in the generic
case that the deformations do not adjust to a linear regression and form a curve
that needs to be described with a higher degree polynomial.

Once the shear center position is known, a pure shear load is applied in the wingtip.
It is not possible to apply the force in the shear center because the structure does
not exist along all y = 0 and the mesh is not infinite, but en equivalent force with 0
resultant moment can be calculated as the sum of different forces in 3 coordinates,
as it can be seen in Figure 6.
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Figure 6: How to obtain an equivalent force to one applied at a non-existing node.

When applying a pure torsional load, T = 0 and M ′ = −Q so S12 and S22 can be
obtained as seen in Equation 5.

S12 = θ
′
/M = −θ′′/Q, S22 = h

′′
/M = −h′′′/Q (5)

Figure 7: Displacement in the different sections when applying a pure shear load.

In both cases all displacements from the sections where the sensors are are evaluated
to obtain the derivative values that will be used to obtain E−1 matrix, that will be
inverted to find E, EI and GJ . These values are calculated for a wing of c = 1 and
AR = 5, but are considered constant for the rest of the problem regardless of the
aspect ratio.
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3. 2D FEM Analysis - Section properties

As a first step, all the properties of the section are calculated. In this problem, as
properties are constant, properties of the first section are calculated and they are
applied to the whole span taking into account that they are calculated per unit of
length.

To calculate the section properties it is necessary to use the connectivity matrices
(Tn and Tm). The four points of the square section are obtained along with its
density (specified in Figure 1). With these data the centroid coordinates, the area
of each element and the density of each element can be obtained to calculate the
total mass per unit of length, the center of mass in x and the inertia about the shear
center per unit of length.

Figure 8: Quadrilateral element of the mesh.

To calculate the area of the mesh, it is assumed that the quadrilateral elements have
an almost rectangular shape to apply the following assumption (Equation 6). Where
a, b, c and d are the sides of the quadrilateral calculated as the distance between the
(x, z) coordinates of adjacent nodes because they are in the same section y.

A[e] =
1

2
(ab+ cd) (6)

For the centroid, as the airfoil is symmetric in z and only coordinate x is needed,
only x coordinates of each node are accounted for.
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4. 1D Beam analysis

Once the properties per unit of length are calculated, it is possible to proceed to
1D analysis. The span of the wing is divided into elements (n ely)for this purpose,
the more elements, the more numerical accuracy the results will have. In this as-
signment the results presented for the divergence speed and the first modes will be
corresponding to a 40 elements division.

4.1. Element matrices

The matrices Ke and M e can be calculated for all the elements. In this case, as
properties per unit of length are constant only one Ke and one M e are needed, and
they will be applied to all the elements. At this point, the aspect ratio of the wing
becomes relevant because the length of each element is calculated. The variation of
the aspect ratio is made by changing the span of the wing, to avoid variations in
the calculated shape and matrices that are made with c = 1.

Figure 9: Stiffness and mass matrix of the wing.

4.2. Matrices assembly

After obtaining the element matrices they are assembled to find global structural
M and K. There are 3(n ely + 1) DOFs because u will be evaluated at each side of
each element, as seen in Figure 10.

[K](I,J) = [K](I,J) + [K[i]](p,q) (7)

[M](I,J) = [M](I,J) + [M[i]](p,q) (8)
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Figure 10: Element discretization at the beam.

4.3. Element force vector

The forces at each element can be discretized assigning the forces of the panel to its
nodes as seen in Figure 11. The distributed lift force is converted into two forces and
two moments applied (one of each) at each node of the element, while the moment
is converted into two moments applied one at each node.

Figure 11: Element forces discretization.

Figure 12: Element forces vector.
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5. Aerodynamics

Once structural calculations have been done, it is time to evaluate the aerodynamic
side of the problem. Two different methods will be used to account for steady and
unsteady aerodynamics.

5.1. Lifting line surface analysis

The objective of the aerodynamic analysis is to find the aerodynamic forces seen
in Figure 12, that, as seen in Section 6, can be obtained from the total lift on the
elements matrix (L). The lift on an element can be expressed as seen in Equation 9.

L[i] = ρ∞U∞S
[i]Γ[i] (9)

Where the surface of each element can be directly calculated and Γ can be obtained
through the system in Figure 13.

Figure 13: System of equations to find Γ.

So the total lift can be expressed as:

{L} = −ρ∞U2
∞[S][A]−1{α} (10)

And, as seen in Figure 13, the aerodynamic influence coefficients matrix can be
calculated using the lifting line surface analysis. Induced velocities are calculated
at collocation points of each panel at 3/4c as the sum of the contributions of the
horseshoe vortex segments. As a summary, the aerodynamic analysis’ outputs are
matrices [S] (surface of each element) and [A] (aerodynamic influence coefficients).

5.2. Theodorsen’s aerodynamic model

According to Theodorsen’s model the aerodynamic expressions for the lift and the
moment are:

Figure 14: Lift and moment in Theodorsen’s model.
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The objective of the aerodynamic analysis is to find the aerodynamic forces seen in
Figure 12. In this case, the aerodynamic forces seen in Figure 12 can be expressed
as:

Figure 15: Aerodynamic forces in Theodorsen’s model.

Where:

Figure 16: ÂR(k), ÂI(k) and I matrices definition.

Where a and b are:
a = xsc/b− 1, b = c/2 (11)

and the Theodorsen’s function C(k) = F (k) + iG(k) (to account for attenuation by
wake vorticity) is given by the equation in Figure 17 in this case.

Figure 17: Coefficients F (k) and G(k) of Theodorsen’s function.
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6. Systems coupling - Force vector assembly

6.1. Divergence analysis

The L matrix of the steady aerodynamic analysis is expressed in terms of α, and
needs to be expressed in terms of the structural unknown vector to be coupled into
the system. α[i] ( = θ[i]) is also calculated for every element, and needs to be applied
to the nodes. Figure 18 illustrates how this conversion is made to obtain Equation
12.

{L} = −ρ∞U2
∞[S][A]−1[I]{u} (12)

Figure 18: Expression of α in terms of the structural unknown vector.

Now, the aerodynamic forces are ready to be coupled into the element equilibrium
equation:

[M[i]]{ü[i]}+ [K[i]]{u[i]} = {f[i]} (13)

where {ü} is 0 because it is a steady problem and where (only θ is considered):

{u[i]} =



θ(i)

h(i)

γ(i)

θ(i+1)

h(i+1)

γ(i+1)


=



θ(i)

0
0

θ(i+1)

0
0


; {f[i]}



T
[i]
1

F
[i]
1

M
[i]
1

T
[i]
2

F
[i]
2

M
[i]
2


(14)

Each element’s lift and moment is expressed in terms of L, and the force assembly
matrix Q is obtained to get:
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Figure 19: RHS of the equation.

So:
[K]{u} = {F(u)} = −q∞[Ka]{u} (15)

([Ks] + q∞[Ka]){u} = 0 (16)

To get the divergence speed and nodes, the first 3 DOFs of each matrix are prescribed
and the structural stifness matrix is adimensionalized with the analytical solution
for the divergence condition (QDa = π2/4b2 GJ/ceCll,α) for a wing with constant
properties. The aerodynamic stiffness matrix (Ka) needs to be inverted to solve
the system and find the eigenvalues but as there are 0s in the diagonal it is not
possible to invert it. the solution to this numerical problem has been adding an
almost negligible value (1x10−10) to the diagonal of the matrix to be able to invert
it. The eigenvalues and eigenvectors of the system have been found.

The adimensional divergence condition QD is given by the minimum eigenvalue. To
find UD the value is dimensionalized multiplying it by QDa and later obtaining the
UD (ρ is known). The first five modes are found at the end of the eigenvector matrix.
So the minimum divergence speed and the first five modes of the wing are obtained.

6.2. Flutter analysis

In this case, having obtained the aerodynamic element forces as a function of k,
when adding the element force vector, the F matrix is:

Figure 20: RHS of the equation.

The element force vector and the force assembly matrix in this case are:

Figure 21: Shape of the element force vector.
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To solve the system, matrices M and K are adimensionalized and the system is
expressed:

Figure 22: Equilibrium equation for the non-steady case.

Applying the definitions in Figure 23 and the boundary conditions (prescribing the
first 3 DOFs) the system to be solved becomes as in Figure 24.

Figure 23: Values of λ, µ and κ.

Figure 24: Resulting system for the non-steady case.

The flutter condition is given by det([D̂(κF )]−λF [1]) = 0. To solve the system a set
of values for κ are defined to be tried in different iterations and all the values that
depend on it are recalculated each time. The eigenvalues of D̂LL are obtained. For
every iteration, values ωF and UF are calculated and stored with their corresponding
κ. The values of ωF that have a non-null negative imaginary part are identified,
because it means that those modes may cause instabilities. To evaluate this, the
positions of all the modes that create instability are stored in a matrix, so that they
can later be identified and associated to their κ. The minimum UF for each κ with
instability is evaluated as well.
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7. Code structure

1. Input data and geometric parameters calculation: Input data given
is read from the mesh file naca0012. The geometry of the entire wing problem
is defined, total number of beams and plates, total number of nodes, number
of nodes for each element, etc. Physical and material properties (Young’s
modulus, densities, etc). Also all the sensors needed to store the displacements
through the span and sections.

2. Find shear center: First loading test with the given functions, with a pure
torsional load. Evaluate displacements and find the elastic axis.

3. Compute the pure shear load: Second loading test with a force placed
in the elastic axis.

4. Obtain E matrix: Calculation of the derivatives of the displacements and θ
angles. Computation of E with S11, S12, S21 and S22.

5. Compute section properties: Obtainment of Isc, total mass per unit length
and the center of mass.

6. Obtainment of K[e] and M[e] and the corresponding assembly.

7. Lifting-line surface analysis: Computation of all the induced velocities
due to the vortex in all the discretized panels along the wing. Create the
aerodynamic influence coefficients matrix. And the matrix assembly of Kaero
needed to solve the total lift of the elements. Introduce the element force
vector assembly.

8. Divergence analysis: Solve the determinant of the system and find the
eigenvalues and first five modes (eigenvectors). And plot the comparison be-
tween aspect ratios.

9. Iteration for different aspect ratios (Return to step 6)

10. Flutter analysis: Solve the instabilities for a AR = 5 and 5 elements in the
span. Analysis of the behaviour near the boundary flutter speeds. Plot the
refinement iterations between closer values of kf .
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8. Results

8.1. Divergence speed for different wing aspect ratios

Figure 25: Divergence speeds of the wing for different aspect ratios.

Divergence occurs when the increase in the aerodynamic moment is bigger than the
increase in restoring moment from the wing’s torsional stiffness. Figure 25 shows
how divergence speed decreases with the aspect ratio. This happens because the
higher the aspect ratio is, the more span (c is constant) the torsion has to make an
influence on θ. A very high speed for a square wing (as seen in Figure 25) makes
sense because the necessary lift to twist the wing enough to reach divergence is very
high.

AR 1 2 3 4 5

UD [m/s] 5070.3 1372.4 662.8 396.2 272.0

AR 6 7 8 9 10

UD [m/s] 200.4 154.5 123.7 101.9 86.8

Table 1: Divergence speeds for aspect ratios 1 to 10.
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8.2. First modes associated to divergence conditions for dif-
ferent aspect ratios

Figure 26: AR = 1. Figure 27: AR = 4.

Figure 28: AR = 5. Figure 29: AR = 6.

Figure 30: AR = 8. Figure 31: AR = 10.

Figure 32: First five modes for different AR.
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8.3. Flutter stability plots

For the flutter analysis, κ has been evaluated using a logarithmic distribution from
κ = 10−3 to κ = 103, since the aim is to guess at which κ range the flutter boundary
appears (point where the imaginary component of ωF changes sign. In this way, a
wide range is covered in the same computation. Figures 33 and 36 show plots of the
ωF and minimum UF for these κs. These results have been evaluated for the simple
case of 5 elements.

Figure 33: Wf for k = 10−2 to 103.

Figure 33 and Table 2 show that the ωF has non-null negative imaginary component
for κ = 0.001 and for κ > 10. The very small value of κ has an associated speed that
is not reachable in the problem’s conditions, so the search for the flutter boundary
is made around κ = 10.

kf Minimum unstable speed [m/s] Unstable modes

0.001 69044.40 11, 12, 13, 14

0.01 - -

0.1 - -

1 - -

10 24.88 12, 13, 14

100 2.488 12, 13, 14

1000 0.25 12, 13, 14

Table 2: Minimum unstable speed and unstable modes for κ 0.001 to 1000.
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In the first refinement between κ = 1 and κ = 10, the change can be seen between
κ = 1 and κ = 2 (see Figure 34 and Table 3). This leads to a second refinement.

Figure 34: Wf for k = 10 to 100.

kf Minimum unstable speed [m/s] Unstable modes

1 - -

2 244.21 14

3 162.81 14

4 96.90 13, 14

5 49.77 12, 13, 14

6 41.47 12, 13, 14

7 35.55 12, 13, 14

8 31.10 12, 13, 14

9 27.65 12, 13, 14

10 24.88 12, 13, 14

Table 3: Minimum unstable speed and unstable modes for κ 1 to 10.

The second refinement is made between κ = 1 and κ = 2 (see Table 4). This process
should be iterative and automatized, but it has not been implemented in the code.
In Figure 35, a more clear tendency of the imaginary part getting smaller until it
gets positive can be seen, especially between iteration 1 and 2, corresponding to
κ = 1 and κ = 1.1. The value of the minimum flutter speed is around 444m/s as it
can be seen in the table and appears in mode 14.
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Figure 35: Wf for k = 1 to 2.

kf Minimum unstable speed [m/s] Unstable modes

1 - -

1.1 444.03 14

1.2 407.02 14

1.3 375.71 14

1.4 348.88 14

1.5 325.62 14

1.6 305.27 14

1.7 287.31 14

1.8 271.35 14

1.9 257.07 14

2 244.21 14

Table 4: Minimum unstable speed and unstable modes for κ 1 to 2.

Including Figure 33 has been considered interesting, not because it provides in-
teresting flutter data but because it gives information about the tendency of the
eigenvalues and it is a useful way to test that the code works properly even in the
nodes that may not cause instabilities.
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Figure 36: Minimum flutter speeds for k = 10−2 to 103.
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9. Conclusions

In this assignment, it can be seen that simulating 3D conditions when doing an
aeroelastic beam analysis is possible. When solving a problem of this kind, it is
important to know how to couple the different systems, so that the DOFs and the
equations of every system match with each other.

An analysis for a stable case and an unstable case have been performed. A method to
perform further iterations in the refinement of the unstable case could be performed
as an improvement. Further improvements could include variations on different
parameters of the structure, such as the AR, to see how it affects flutter. Other
assessments could include the variation of material properties.

Since the unsteady case study is complex, 5 elements have been used to perform
calculations. Increasing the number of elements would be interesting too. For the
steady case, mirroring in the horseshoe vortex for the study of the behavior of a
whole wing can be included.

To approximate the study to a more real wing, other features could be added to the
wing, such as sweep, dihedral or taper ratio. But to include these kind of features
the 3D structure model should be changed, just like changing the wing that is going
to be studied in a wind tunnel.
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10. Code

10.1. Main

1

2 % Initialize

3 clear

4 close all

5 clc

6

7 %% Data

8

9 % Geometry data

10 meshfile = ’naca0012 ’;

11 c = 1; % Chord

12 b = 5*c; % Span

13 AR = b/c; % Aspect Ratio

14

15 Xsc = 0; % shear center (later will be computed)

16

17 n_ely = 5; % #elements in the span

18

19 % Material data

20 mat = [

21 % Density Young Poisson

22 2000, 9e9 , 0.27; % Skin

23 1800, 150e9 , 0.30; % Spars

24 2300, 70e9 , 0.35; % Stringers

25 ];

26

27

28 %% Setup lab

29

30 [probData ,vLab] = SetupTest(meshfile ,c,b,mat);

31

32 %% Setup displacement sensors

33

34 % - Each row correspond to the coordinates of a ’sensor ’ on the

setup:

35 X_app = [0.1, 4, 0 % sensor 1 s1

36 0.2, 4, 0 % sensor 2 s1

37 0.4, 4, 0 % sensor 3 s1

38 0.6, 4, 0 % sensor 4 s1

39 0.8, 4, 0 % sensor 5 s1

40 1, 4, 0 % sensor 6 s1

41

42 0.1, 3.5, 0 % sensor 1 s2

43 0.2, 3.5, 0 % sensor 2 s2

44 0.4, 3.5, 0 % sensor 3 s2

45 0.6, 3.5, 0 % sensor 4 s2

46 0.8, 3.5, 0 % sensor 5 s2

47 1, 3.5, 0 % sensor 6 s2

48

49 0.1, 3, 0 % sensor 1 s3

50 0.2, 3, 0 % sensor 2 s3

51 0.4, 3, 0 % sensor 3 s3
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52 0.6, 3, 0 % sensor 4 s3

53 0.8, 3, 0 % sensor 5 s3

54 1, 3, 0 % sensor 6 s3

55

56 0.1, 2.5, 0 % sensor 1 s4

57 0.2, 2.5, 0 % sensor 2 s4

58 0.4, 2.5, 0 % sensor 3 s4

59 0.6, 2.5, 0 % sensor 4 s4

60 0.8, 2.5, 0 % sensor 5 s4

61 1, 2.5, 0 % sensor 6 s4

62

63 0.1, 2, 0 % sensor 1 s5

64 0.2, 2, 0 % sensor 2 s5

65 0.4, 2, 0 % sensor 3 s5

66 0.6, 2, 0 % sensor 4 s5

67 0.8, 2, 0 % sensor 5 s5

68 1, 2, 0 % sensor 6 s5

69

70 0.1, 1.5, 0 % sensor 1 s6

71 0.2, 1.5, 0 % sensor 2 s6

72 0.4, 1.5, 0 % sensor 3 s6

73 0.6, 1.5, 0 % sensor 4 s6

74 0.8, 1.5, 0 % sensor 5 s6

75 1, 1.5, 0]; % sensor 6 s6

76

77 [~,X_nod] = probData.MeshData {1}. getNodes(X_app);

78

79

80 %% Pure torsion load force set CASE ID = 1

81

82 % forces to pure torsion load

83 cas = 1;

84 [fext_T , T] = set_forces(cas ,Xsc);

85

86 % PURE TORSION CASE (case ID = 1)

87 [rep_F_T ,rep_D_T ,rep_R_T ,vLab ,T_T ,M_T] = LoadingTest(probData ,

fext_T ,X_nod ,vLab ,’caseID ’ ,1);

88

89 %% Postprocessing results

90

91 % study of the sections displacements (in this case solution of the

shear center)

92 [Xsc , d_theta_T , dd_h_T , dd_theta_T , ddd_h_T] = findshearcenter(

X_nod , rep_D_T , cas , Xsc);

93

94 %% Compute the pure shear load (bending) case (case ID = 2)

95

96 % forces to pure bending load

97 cas = 2;

98 [fext_M , M_test] = set_forces(cas , Xsc);

99

100 % solutions of the loading test

101

102 [rep_F_M , rep_D_M , rep_R_M , vLab , T_M , M_M] = LoadingTest(probData ,

fext_M , X_nod , vLab , ’caseID ’, 2);

103

104 % study of the sections displacements
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105 [Xsc , d_theta_M , dd_h_M , dd_theta_M , ddd_h_M] = findshearcenter(

X_nod , rep_D_M , cas , Xsc);

106

107 % obtain the matrix of the assumed uncoupled structure

108 [E] = obtain_E(T,M_test ,d_theta_T ,dd_h_T ,dd_theta_M ,ddd_h_M);

109

110 %% compute all the section section properties

111 ii = 0;

112

113 % import the data from profile

114 [Tn,Tm,Xnod] = import_mesh ();

115

116 [Isc , d, mass_tot] = section_properties(Xnod , Tn, Tm, mat , Xsc);

117

118 for b = 1:1:5

119

120 [K, M, GJ, EI] = obtain_K_M(b, n_ely , E, Isc , mass_tot , d);

121

122 [M_ass , K_ass , Tn_y , Y_coord] = assembly(K, M, n_ely , b);

123

124 %% Horsheshoe elements discretization

125 [K_aero , e, RHO] = lift_line(b, Y_coord , Xsc , n_ely);

126

127 % SOLVERS %

128

129 %% Divergence speed + modes

130 % midterm problem

131 [V_theta_5 , lambda_prima , Ud] = divergence(K_aero , K_ass , GJ, b

, e, c, RHO , Y_coord , n_ely);

132

133 ii = ii+1;

134 Ud_min(ii) = min(Ud);

135

136 end

137

138 % plot different divergence speeds

139

140 figure (20)

141 hold on

142 plot (1:1:5 , Ud_min);

143 title(’Divergence speeds for different AR’);

144 xlabel(’AR’);

145 ylabel(’Divergence speeds (Ud)’);

146 grid on;

147

148 %% Flutter analysis %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

149

150 % theodorsen

151

152 % wing geometry

153

154 AR = 5;

155 c = 1;

156 b = AR * c;

157 l_elem = b/n_ely;

158

159 % nodal connectivities en 1D
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160 for e = 1: n_ely

161 Tnod(e,1) = e;

162 Tnod(e,2) = e+1;

163 end

164

165 % utilizamos las matrices y valores para el AR = 5 del analisis

anterior

166

167 % creamos la nueva matriz Q

168 Q_mat = zeros (3*n_ely , 3*n_ely);

169

170 Q = (l_elem /(2*b))*[ 1 0;

171 0 1;

172 0 l_elem /(6*b);

173 1 0;

174 0 1;

175 0 -l_elem /(6*b)];

176

177 for e = 1: n_ely

178 Q_mat ((3*(e-1) +1:3*(e-1)+6), (3*e-2) :(3*e-1) ) = Q;

179 end

180

181 % iniciamos con parametros

182 B = c/2;

183 a = (Xsc/B) -1;

184

185 W_theta = sqrt(GJ/(Isc*B^2));

186

187 %% Matrices A de theodorsen

188 AR_a = [1/8+a^2 a;

189 a 1];

190 AR_b = [2*a^2-0.5 2*a+1;

191 2*a-1 2];

192 AR_c = [1+2*a 0;

193 2 0];

194

195 AI_a = [a-0.5 0;

196 1 0];

197 AI_b = [2*a^2-0.5 2*a+1;

198 2*a-1 2];

199 AI_c = [1+2*a 0;

200 2 0];

201

202 I = [0.5 0 0;

203 0 0.5 0];

204

205 I_mat = zeros (3*n_ely ,n_ely *3);

206

207 for e = 1: n_ely

208 I_mat ((3*e-2) :(3*e-1), 1+3*(e-1) :6+3*(e-1)) = [I I];

209 end

210

211 %% Modificar las matrices estructurales

212 b_mat = [1 0 0;

213 0 B 0;

214 0 0 1];

215
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216 B_mat = zeros(n_ely*3,n_ely *3);

217 B_mat = diag(b);

218

219 M_theo = zeros(n_ely*3,n_ely *3);

220 M_theo = (1/( mass_tot*B^3))*B_mat ’* M_ass*B_mat;

221

222 K_theo = zeros(n_ely*3,n_ely *3);

223 K_theo = (1/( mass_tot*W_theta ^2*B^3))*B_mat ’* K_ass*B_mat;

224

225 % presciibed DOF

226 K_theo = K_theo (4:( n_ely *3+3) ,4:( n_ely *3+3));

227 M_theo = M_theo (4:( n_ely *3+3) ,4:( n_ely *3+3));

228

229 %% Solver system

230 % from pdf flutter analysis

231 U_inf = 1;

232 rho = 1;

233

234 mu = mass_tot /(pi*rho*B^2);

235

236 % initial value for k

237 k = 10^-3;

238

239 % para n_ely =5 vemos aparcion de flutter de k = 10 a 100

240 % refinamos esa area para estudiar mejor

241 % k_min = 10;

242 % k_max = 100;

243 % ite = 0;

244

245 w_f = zeros(10, n_ely);

246 U_f = zeros(10, n_ely);

247 mode = zeros(n_ely , 10);

248

249 % comienza las iteraciones para valores de k

250 % Specify a set of a trial values for k_F

251

252 for ite = 1:6

253 % for k = k_min :10: k_max

254

255 %ite = ite + 1;

256

257 F = (0.5*k^4 + 0.0765*k^2 + 1.8632*10^ -4) /(k^4 + 0.0921*k^2 +

1.8632*10^ -4);

258 G = ( -0.1080*k^3 - 8.8374*k*10^ -4)/(k^4 + 0.0921*k^2 +

1.8632*10^ -4);

259

260 A_R = k^2* AR_a + k*G*AR_b + F*AR_c;

261 A_I = k*AI_a - k*F*AI_b + G*AI_c;

262

263 A_mat = zeros(n_ely*3, n_ely *3);

264

265 for i = 1: n_ely

266 A_mat (1+3*(i-1) :2+3*(i-1) ,1+3*(i-1) :2+3*(i-1)) = A_R + 1i*

A_I;

267 end

268

269 % system to solve
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270 F_LL = Q_mat*A_mat*I_mat;

271 F_LL = F_LL (4:( n_ely *3+3) ,4:( n_ely *3+3));

272

273 D_LL = inv(K_theo)*M_theo + ((mu*k^2)^(-1))*inv(K_theo)*F_LL;

274

275 % For each k_F , find the eigenvalue of D(k), which correspond

to lambda_F.

276 [vectors_flutt , lambda_flutt] = eig(D_LL);

277 lambda_flutt = diag(lambda_flutt);

278

279 % For each eigenvalue lambda_F , and the corresponding k, obtain

:

280 mod = 1;

281

282 for e = 1:size(lambda_flutt ,1)

283

284 w_f(ite ,e) = W_theta/sqrt(lambda_flutt(e));

285 % Find modes and K_f ranges for which Im(w_F) <0 (unstable).

286

287 U_f(ite ,e) = B * real(w_f(ite ,e))/k;

288

289 % find modes and k ranges for which Im(wf) <0

290 % unstable

291 if imag(w_f(ite ,e))<0 && real(U_f(ite ,e))>0

292 % # modes where unstable

293 mode_range(ite ,mod) = e;

294 U_f_danger(ite ,mod) = U_f(ite ,e);

295 mod = mod + 1;

296

297 end

298

299 % number of modes in unstable conditions

300 mod_ite(ite) = mod;

301

302 end

303

304 % find the minimum real values for flutter speed for each k

305 [U_f_min(1,ite), index(1,ite)] = min(real(U_f(ite ,:)));

306 % the eigenvalue lambda to the minimum uf of the iteration

307 lambda_min (1,ite) = lambda_flutt(index(1,ite));

308

309 %Repeat for the next k

310 %sweep from 1e-3 to 1e3 in a logarithmic scale.

311 k = k * 10;

312 k_mat(1,ite) = k;

313 end

314

315 % plot the minimun real flutter speeds

316 figure (30)

317 hold on

318 plot(k_mat (1,:),U_f_min (1,:));

319 title(’Minimum flutter speeds ’)

320 xlabel(’k’)

321 ylabel(’Flutter Speed (m/s)’)

322 set(gca , ’XScale ’, ’log’)

323 grid on

324
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325 % plot the imaginary part of w_f to see when is <0

326 figure (40)

327 hold on

328 for ite = 1:6

329 plot (1:1: n_ely*3,imag(w_f(ite ,:)));

330 end

331 title(’W_f(k)’)

332 xlabel(’modes’)

333 ylabel(’W_f’)

334 leg = legend(’k1’,’k2’,’k3’,’k4’,’k5’,’k6’,’k7’,’k8’,’k9’,’k10’);

335 title(leg ,’# iteration ’)

336 grid on

337

338 % Interpolate the limits of the k_F ranges obtained to obtained to

339 % obtain the U_F corresponding to flutter boundary.

340

341

342 %% RESULTS REQUIRED %%

343

344 % For a clamped -free straight panel with constant NACA0012 airfoil

345 % section , obtain:

346

347 % 1 - Divergence speed for different wing aspect ratios.

348 % 2 - First modes associated to divergence conditions for different

aspect

349 % ratios.

350 % 3 - Stability plots for flutter.

10.2. Functions

1 function [M_ass , K_ass , Tn_y , Y_coord] = assembly(K, M, n_ely , span

)

2

3 % 1D beam analysis

4

5 l_elem = span/n_ely; % define criteria to set the lenght of each

element

6

7 for i = 1: n_ely

8

9 % nodal connectivities en y

10 Tn_y (i,1) = i ;

11 Tn_y (i,2) = i + 1 ;

12

13 % nodal coordinate

14 Y_coord(i)= (l_elem /2)+l_elem *(i-1);

15

16 end

17

18 K_ass = zeros (3* (n_ely + 1), 3* (n_ely + 1));

19 M_ass = zeros (3* (n_ely + 1), 3* (n_ely + 1));

20

21 for e = 1: n_ely

22 for nod = 1:2

23 for dof = 1:3
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24

25 p = 3* (nod - 1) + dof;

26 I = 3* ((Tn_y(e,nod)) - 1) + dof;

27

28 for nod_b = 1:2

29 for dof_2 = 1:3

30

31 q = 3*(nod_b -1) + dof_2;

32 J = 3*(( Tn_y(e,nod_b)) -1) + dof_2;

33

34 K_ass(I,J) = K_ass(I,J) + K(p,q);

35 M_ass(I,J) = M_ass(I,J) + M(p,q);

36

37 end

38 end

39

40 end

41 end

42 end

43

44 end

1 function [V_theta_5 , lambda_prima , Ud] = divergence(Ka, Ks, GJ, b,

e, C, rho , y, n_ely)

2

3 %% boundary conditions --> prescribe the first 3 dof in each matrix

4 Ka = Ka(4:end , 4:end);

5 Ks = Ks(4:end , 4:end);

6

7 % analitical solution for constant properties;

8 Cl_alpha = 2*pi;

9 QD = (pi^2 * GJ) / (4 * b^2 * Cl_alpha * e * C);

10

11 %% solve the eigenvalues

12 Ks = Ks/QD;

13

14 Ka = Ka + eye(length(Ka(1,:)))*10^ -10;

15

16 % eigenvalues of the matrix

17 [V,lambda_prima] = eig(-Ka\Ks);

18 lambda_prima = diag(lambda_prima);

19

20 % positives

21 lambda_prima = lambda_prima(lambda_prima >0);

22 min_lambda = min(lambda_prima);

23

24 j=0;

25

26 for i=1: n_ely

27 if lambda_prima(i) >0

28 j=1+j;

29

30 % divergence condition given by the minimum value of the

lambda prima

31 qD(1,j) = lambda_prima(i);

32
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33 % divergence speed at each panel

34 Ud(1,j) = sqrt(QD*qD(1,j)*2/ rho);

35 end

36 end

37

38 % to evaluate divergence its interesting the minimum value of the

qD

39 min_qd = min(qD);

40

41 % only interest the ones corresponding to theta values

42 V_theta = V(1:3:end ,:);

43

44 % the y/N in the x-axis of the plot

45 modes_y_adim = zeros(1,n_ely);

46 for i=1: n_ely

47 modes_y_adim (1,i)=y(i)/b;

48 end

49

50 %% the first 5 ones

51

52 nummodes = 5;

53

54 j=n_ely *3;

55 for i = 1: nummodes

56 V_theta_5(:,i) = V_theta(:,j);

57 j = j - 1;

58 end

59

60 % plot the 5 modes

61

62 figure (10)

63 hold on

64 for mode =1: nummodes

65 modes_x = V_theta_5(:,mode);

66 plot(modes_y_adim , modes_x);

67 end

68 grid on

69 box on

70 title(’First 5 modes of the elastic twist with AR = 1 ’);

71 xlabel(’Span (y/b)’);

72 ylabel(’Eigenvector ’);

73 xlim ([0 1]);

74

75 end

1 function [Xsc_new , d_theta , dd_h , dd_theta , ddd_h ]= findshearcenter(

X_nod , rep_D , cas , Xsc)

2

3

4 % CASE ID = 1 PURE TORSION LOAD

5

6 % regresion linial de los displacement

7

8 disp_X_s1=rep_D (1:6 ,4); % X displacement s1

9 disp_Y_s1=rep_D (1:6 ,5); % Y displacement s1

10 disp_Z_s1=rep_D (1:6 ,6); % Z displacement s1
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11

12 disp_X_s2=rep_D (7:12 ,4); % X displacement s2

13 disp_Y_s2=rep_D (7:12 ,5); % Y displacement s2

14 disp_Z_s2=rep_D (7:12 ,6); % Z displacement s2

15

16 disp_X_s3=rep_D (13:18 ,4); % X displacement s3

17 disp_Y_s3=rep_D (13:18 ,5); % Y displacement s3

18 disp_Z_s3=rep_D (13:18 ,6); % Z displacement s3

19

20 disp_X_s4=rep_D (19:24 ,4); % X displacement s3

21 disp_Y_s4=rep_D (19:24 ,5); % Y displacement s3

22 disp_Z_s4=rep_D (19:24 ,6); % Z displacement s3

23

24 disp_X_s5=rep_D (25:30 ,4); % X displacement s3

25 disp_Y_s5=rep_D (25:30 ,5); % Y displacement s3

26 disp_Z_s5=rep_D (25:30 ,6); % Z displacement s3

27

28 disp_X_s6=rep_D (31:36 ,4); % X displacement s3

29 disp_Y_s6=rep_D (31:36 ,5); % Y displacement s3

30 disp_Z_s6=rep_D (31:36 ,6); % Z displacement s3

31

32 X=X_nod (1:6 ,1); % X coordinate (chord)

33 Y=X_nod (1:6:31 ,2);

34

35 figure ()

36 plot(X, disp_Z_s1 , X, disp_Z_s2 , X, disp_Z_s3 , X, disp_Z_s4 , X,

disp_Z_s5 , X, disp_Z_s6);

37 ylabel(’Displacements in z ’);

38 xlabel(’x/c’);

39 title(’Displacement in different sections (results solver)’);

40 grid on;

41 leg = legend(’4’,’3.5’,’3’,’2.5’,’2’,’1.5’);

42 title(leg ,’y(m)’)

43

44 x=[0:0.1:1]; % point to evaluate the

polynomial

45

46 p1=polyfit(X,disp_Z_s1 ,1); % linial curve

47 y1_fit = polyval(p1 ,x);

48

49

50 p2=polyfit(X,disp_Z_s2 ,1); % linial curve

51 y2_fit = polyval(p2 ,x);

52

53

54 p3=polyfit(X,disp_Z_s3 ,1); % linial curve

55 y3_fit = polyval(p3 ,x);

56

57

58 p4=polyfit(X,disp_Z_s4 ,1); % linial curve

59 y4_fit = polyval(p4 ,x);

60

61

62 p5=polyfit(X,disp_Z_s5 ,1); % linial curve

63 y5_fit = polyval(p5 ,x);

64

65
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66 p6=polyfit(X,disp_Z_s6 ,1); % linial curve

67 y6_fit = polyval(p6 ,x);

68

69

70 figure ()

71 plot(x, y1_fit , x, y2_fit , x, y3_fit , x, y4_fit , x, y5_fit , x,

y6_fit);

72 ylabel(’Displacements in z’);

73 xlabel(’x/c’);

74 title(’Displacement in different sections (with polyfit)’);

75 grid on;

76 leg = legend(’4’,’3.5’,’3’,’2.5’,’2’,’1.5’);

77 title(leg ,’y(m)’)

78

79 % Theta values for each section

80 theta = [atand(p1(1)); atand(p2(1)); atand(p3(1)); atand(p4(1));

atand(p5(1)); atand(p6(1))];

81

82 % intersection of the torsion lines

83 % A1x+B1=A2x+B2

84 if cas ==1

85 f1 = @(x1) p6(1)*x1+p6(2)-p1(1)*x1 -p1(2);

86 Xsc1 = fsolve(f1 ,1);

87

88 f2 = @(x2) p5(1)*x2+p5(2)-p2(1)*x2 -p2(2);

89 Xsc2 = fsolve(f2 ,1);

90

91 f3 = @(x3) p3(1)*x3+p3(2)-p1(1)*x3 -p1(2);

92 Xsc3 = fsolve(f3 ,1);

93

94 f4 = @(x4) p4(1)*x4+p4(2)-p2(1)*x4 -p2(2);

95 Xsc4 = fsolve(f4 ,1);

96

97 f5 = @(x5) p5(1)*x5+p5(2)-p3(1)*x5 -p3(2);

98 Xsc5 = fsolve(f5 ,1);

99

100 f6 = @(x6) p6(1)*x6+p6(2)-p4(1)*x6 -p4(2);

101 Xsc6 = fsolve(f6 ,1);

102

103 % Determinar shear center

104 Xsc_new =(Xsc1+Xsc2+Xsc3+Xsc4+Xsc5+Xsc6)/6;

105 end

106

107 p = 0; % counter

108 X = X_nod (1:6 ,1); % position of the sensors on the chord

109

110 % find matrix for shear center displaments

111

112 for i = 1:6:31

113

114 p = p+1;

115

116 % Z displacement section i

117 disp_Z = rep_D(i:(i+5) ,6);

118

119 % h values at each section (using the shear center position)

120 disp_Z_pol = polyfit(X, disp_Z , 3);

34 133



Advanced Aeroelasticity MUEA-ESEIAAT

121 h(p,1) = polyval(disp_Z_pol , Xsc);

122

123 end

124

125 switch cas

126

127 case 1 % when applying pure torsion load

128

129 fun_theta = polyfit(Y,theta ,1); %se puede sacar mas si se

necesita mayor derivada

130 d_theta = fun_theta (1);

131 dd_theta = 0; % null

132

133 fun_h = polyfit(Y,h,2); % second grade

134 dd_h = 2* fun_h (1);

135 ddd_h = 0;

136

137 case 2 % when pure bending load

138

139 fun_theta = polyfit(Y,theta ,2); %se puede sacar mas si se

necesita mayor derivada

140 d_theta = fun_theta (2);

141 dd_theta = 2* fun_theta (1);

142

143 fun_h = polyfit(Y,h,3); %se puede sacar mas si se

necesita mayor derivada

144 dd_h = 2* fun_h (2);

145 ddd_h = 3*2* fun_h (1);

146

147 Xsc_new=Xsc;

148

149 end

150

151 end

1 function [F] = force_vector(L)

2

3 F = 0.5*L*[0 1;

4 1 0;

5 L/6 0;

6 0 1;

7 1 0;

8 -L/6 0];

9

10 end

1 function [Tn,Tm,Xnod] = import_mesh ()

2

3 addpath(genpath(’./Mesh’)); % open the main folder

4

5 naca0012 ();

6

7 naca0012_profile ();

8

9 Tm = Tmat;
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10 Tn = Tnod;

11 Xnod = xnod;

12

13 end

1 function [Ka_mat , e, RHO] = lift_line(b, Y_coord , x_sc , n_ely)

2

3 %% discretization (constant properties)

4

5 % AoA

6

7 alpha = 0; %geometric angle of attack in degrees

8 beta = 0; %geometric lateral angle (positive angle turns towards

positive y)

9

10 U_inf = 1;

11 U_inf_vect = [U_inf*cosd(alpha)*cosd(beta),U_inf*sind(beta)*cosd(

alpha),U_inf*sind(alpha)]; %free stream velocity components

12 RHO = 1;

13

14 %%%%%%%%%%%%%%%%%%%%%%%%

15 %geometry discretization

16 %%%%%%%%%%%%%%%%%%%%%%%%

17

18 TR = 1; % Tapper ratio

19 sweep = 0; % Sweep angle in degrees (

positive angles sweep backwards)

20 dihedral = 0; % dihedral angle in degrees (

positive angles tilt upwards)

21 twist = 0; % geometric twist in degrees

22

23 l_elem = b/n_ely; % span

24

25 rootC = (2*b^2/b)/(b*(1+TR)); % root chord calculation

26

27 tipC = TR*rootC; % tip chord calculation

28

29 angle_TR = atand ((rootC -tipC)/(2*b)); % angulo de TR

30

31 meanAeroChord =2/3* rootC *(1+TR+TR^2) /(1+TR); % mean aerodynamic

chord calculation

32

33 S_tot = (rootC+tipC)/2*b; % wing surface calculation

34

35 chord = zeros(n_ely ,1);

36

37 for e = 1: n_ely

38 % chord of the airfoil/panel

39 chord(e) = rootC - (rootC -tipC)/(b/2)*abs(Y_coord(e));

40

41 % Surface of the element

42 S(e) = l_elem * chord(e);

43 end

44

45 % Normal vector of the element

46 n_vect = [sind(-alpha); 0; cosd(-alpha)];
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47

48 %% Kutta condition for each element

49 % induced velocity at point x_coll due to a vortex segment between

corners

50 % of the HS

51

52 % induced velocities computation

53

54 A = zeros(n_ely ,n_ely);

55

56 for i = 1: n_ely % FOR EACH CONTROL POINT

57 for j = 1: n_ely % EVERY VORTEX INFLUENCE

58

59 % Coordinatres of collocation point

60 x_coll = [3/4* chord(j) Y_coord(i) 0];

61

62 % coordinates of 4-points HS (square)

63 x_inf = chord(i)*20 + chord(i)*0.25;

64 x_ac = 0.25* chord(i);

65

66 x_HS_1 = [x_inf , Y_coord(j) -0.5*l_elem , 0];

67 x_HS_2 = [x_ac , Y_coord(j) -0.5*l_elem , 0];

68 x_HS_3 = [x_ac , Y_coord(j)+0.5* l_elem , 0];

69 x_HS_4 = [x_inf , Y_coord(j)+0.5* l_elem , 0];

70

71 v_12 = vel_ind(x_HS_2 , x_HS_1 , x_coll);

72

73 v_23 = vel_ind(x_HS_3 , x_HS_2 , x_coll);

74

75 v_34 = vel_ind(x_HS_4 , x_HS_3 , x_coll);

76

77 V = v_34 + v_23 + v_12;

78

79 % A is the aerodynamic influence coefficients matrix

80 A(i,j) = dot(V,n_vect);

81

82 end

83 end

84

85 %% Aerodynamic influence coefficient

86 S_mat = diag(S);

87

88 %% Element Force vector assembly

89

90 %%% porque se anulan los demas componentes

91 %%% es para simplificar y solo nos importa torsion

92

93 e = x_sc - x_ac;

94

95 [f_vect] = force_vector(l_elem);

96 Q = f_vect *[1; e];

97

98 dof = 3;

99 I_mat = zeros(n_ely ,(n_ely +1)*dof);

100 n = 0;

101

102 for i = 1:3:(( n_ely)*3)
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103 n = n+1;

104 I_mat(n,i:1:(i+5)) = [0.5 0 0 0.5 0 0];

105 Q_mat(i:1:(i+5), n) = Q;

106 end

107

108 % quitamos los ceros de la matriz y nos quedamos solo con torsion

109 U_mat = repmat ([1;0;0;] , n_ely+1, 1);

110

111 % F(u) = q_inf *[Ka]*{u}

112 Ka_mat = Q_mat * S_mat* inv(A) * I_mat;

113 F_mat = Ka_mat * U_mat;

114

115 % for steady problem ---> (K_fem - q_inf*K_aero) (theta) = Q

116

117

118 end

1 function [E2]= obtain_E(T, Q, d_theta_T , dd_h_T , dd_theta_M , ddd_h_M

)

2

3 %from applyinmg a pure torsional load (M=0)

4 S_11= d_theta_T/T;

5 S_21= dd_h_T/T; % es para pure torsional

6

7 %from applying a pure shear load

8 S_12= - dd_theta_M/Q; % segunda der

9 S_22= - ddd_h_M/Q; % tercera der

10

11 % uncoupled E

12 E = [ S_11 S_12

13 S_21 S_22];

14

15 E2 = inv(E);

16

17 end

1 function [K, M]= obtain_K_M(L, E, Isc , m, d)

2

3 E=inv(E);

4

5 GJ=E(1,1);

6 EI=E(2,2);

7

8 A(e)= [1 0 0 -1 0 0;

9 0 0 0 0 0 0;

10 0 0 0 0 0 0;

11 -1 0 0 1 0 0;

12 0 0 0 0 0 0;

13 0 0 0 0 0 0];

14

15 % podemos variar el criterio de L entre materiales

16

17 B(e)= [0 0 0 0 0 0;

18 0 12 6*L(e) 0 -12 6*L(e);

19 0 6*L(e) 4*(L(e))^2 0 -6*L(e) 4*(L(e))^2;
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20 0 0 0 0 0 0;

21 0 -12 -6*L(e) 0 12 -6*L(e);

22 0 6*L(e) 4*(L(e))^2 0 -6*L(e) 4*(L(e))^2];

23

24 K(e)= (GJ/L(e)).*A(e)+(EI/(L(e)^3)).*B(e);

25

26 % Isc=;

27 % md=;

28 % m=;

29

30 C(e)= [Isc md 0 0 0 0;

31 md m 0 0 0 0;

32 0 0 0 0 0 0;

33 0 0 0 Isc md 0;

34 0 0 0 md m 0;

35 0 0 0 0 0 0];

36

37 M(e)=(L(e)/2).*C(e);

38

39

40 end

1 function [K, M, GJ, EI]= obtain_K_M(span , n_ely , E, Isc , m_tot , d)

2

3 l_elem = (span/n_ely); % define criteria to set the lenght of each

element

4

5 %%%% make sure that are positive values %%%

6 GJ = abs(E(1,1));

7 EI = abs(E(2,2));

8

9

10 A = [1 0 0 -1 0 0;

11 0 0 0 0 0 0;

12 0 0 0 0 0 0;

13 -1 0 0 1 0 0;

14 0 0 0 0 0 0;

15 0 0 0 0 0 0];

16

17 % podemos variar el criterio de L entre materiales

18

19 B = [0 0 0 0 0 0;

20 0 12 6* l_elem 0 -12 6* l_elem;

21 0 6* l_elem 4*( l_elem)^2 0 -6*l_elem 4*( l_elem)^2;

22 0 0 0 0 0 0;

23 0 -12 -6*l_elem 0 12 -6*l_elem;

24 0 6* l_elem 4*( l_elem)^2 0 -6*l_elem 4*( l_elem)^2];

25

26 K = (GJ/l_elem)*A+(EI/( l_elem ^3))*B;

27

28 l = (l_elem /2);

29

30 M = [l*Isc l*m_tot*d 0 0 0 0;

31 l*m_tot*d l*m_tot 0 0 0 0;

32 0 0 0 0 0 0;

33 0 0 0 l*Isc l*m_tot*d 0;
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34 0 0 0 l*m_tot*d l*m_tot 0;

35 0 0 0 0 0 0];

36

37 end

1 function [I_sc , D, mass_tot] = section_properties(x, Tn, Tm, mat ,

Xsc)

2

3 n_element = size(Tm ,1);

4

5 I_sc = 0;

6

7 for e = 1: n_element

8

9 % obtain the coordinates and material

10 % no estamos leyendo todas las coordenadas

11 % las

12

13 x_j(:,e) = x(Tn(e,:) ,1) ’; % four point of the square section

14 z_j(:,e) = x(Tn(e,:) ,3) ’;

15

16 rho(e) = mat(Tm(e,1)); % density for each element

17

18 % determine the centroid coordinates

19

20 x_cent(e) = 0.25 * sum(x_j(:,e)) ;

21 z_cent(e) = 0.25 * sum(z_j(:,e)) ;

22

23 % determine the area of each element

24

25 a = sqrt((x_j(1,e)-x_j(4,e))^2+( z_j(1,e)-z_j(4,e))^2);

26 b = sqrt((x_j(2,e)-x_j(1,e))^2+( z_j(2,e)-z_j(1,e))^2);

27 c = sqrt((x_j(3,e)-x_j(2,e))^2+( z_j(3,e)-z_j(2,e))^2);

28 d = sqrt((x_j(4,e)-x_j(3,e))^2+( z_j(4,e)-z_j(3,e))^2);

29

30 A(e) = 0.5 * (a*b+c*d);

31

32 end

33

34 mass_tot = 0;

35 cent_mass = 0;

36

37 for e = 1: n_element

38 % total mass p.u.

39 mass_tot = rho(e)*A(e) + mass_tot;

40

41 % center of mass in x coordinates

42 cent_mass = x_cent(e)*rho(e)*A(e) + cent_mass;

43

44 end

45

46 cent_mass = (1/ mass_tot)*cent_mass;

47

48 D = Xsc - cent_mass;

49

50 % inertia about the shear center p.u. lenght
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51 for e = 1: n_element

52 I_sc = (x_cent(e)-Xsc)^2* rho(e)*A(e)+I_sc;

53 end

54

55 end

1 function [fext , f_ref ]= set_forces(cas , Xsc)

2

3 switch cas

4

5 case 1 % ITERATION TO DETERMINE SHEAR CENTER

6 % set 2 forces that create a pure moment

7

8

9 Xa1 = 0.100; % Q1 distance to LE

10 Xa2 = 0.600; % Q2 distance to LE

11

12 Q1 = 5000;

13 Q2 = -5000;

14

15 fext = [Xa1 , 5, 0, 0, 0, Q1

16 Xa2 , 5, 0, 0, 0, Q2;

17 ];

18

19 f_ref = Q1;

20

21 case 2

22

23 % ITERATION TO DETERMINE PURE SHEAR LOAD

24 % set the bending force placed in the shear center

25

26 Xa = Xsc; % M distance to LE

27

28 Xb = 0.2475; % distance to Q eq

29 Xc = 0.5948; % distance to F eq

30 Xd = 1.0000; % distance to -F

31

32 M = 10000;

33 F = M*(Xa-Xb)/(Xd-Xc);

34

35 fext = [0.2475 , 5, 0, 0, 0, M

36 0.5948 , 5, 0, 0, 0, -F

37 1, 5, 0, 0, 0, F;

38 ];

39

40 f_ref = M;

41

42 end

43

44 end

1

2 function V_jk = vel_ind(x_k , x_j , x_coll)

3

4
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5 r_j = x_coll - x_j;

6 r_k = x_coll - x_k;

7

8 l = x_k - x_j;

9

10 %circulacion unitaria

11 circ = 1;

12

13 V_jk = circ /(4*pi)*cross(r_j ,r_k)/(norm(cross(r_j ,r_k))^2)*(dot(l,

r_j)/norm(r_j)-dot(l,r_k)/norm(r_k));

14

15 end
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1 Aim and scope

The aim of this project is to implement a set of MATLAB functions to perform different

kinds of aeroelastic analysis (e.g. assess divergence conditions, flutter study, unsteady

aerodynamics, etc.).

2 Requirements

A series of requirements are demanded for the implementation of the project [1]. They

can be classified in code or results depending on the demanded requirement.

2.1 Code requirements

4 main sections for the code have been demanded in order to solve the problem of joining

aerodynamics and structures.

• Structures

1. Use of 3D FEM code to obtain effective properties

2. MATLAB implementation of a beam’s FEM algorithm

• Aerodynamics

1. For steady aerodynamics: MATLAB implementation of lifting-line solution by

horseshoe elements

2. For unsteady aerodynamics: MATLAB implementation of Theodorsen’s model

• Coupling

1. MATLAB implementation of transfer matrices: structures output (displace-

ments vector) to aerodynamics input (angle of attack) and aerodynamics out-

put (lift distribution) to structures input (force vector)

• Solvers

1. Divergence speed + modes

2. Flutter speed

2
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2.2 Results demanded

The outputs demanded for a clamped free-straight panel with a constant NACA0012

airfoil section are listed below:

• Divergence speed for different wing aspect ratios

• First modes associated to divergence conditions for different aspect ratios

• Stability plots for flutter

3 Theoretical background

In this section, the different theoretical methodologies [1] used for the code implemen-

tation will be commented. They will be based on the requirements given in Section

2.

3.1 FEM analysis

3.1.1 3D FEM analysis

The wing proposed, with a NACA0012 airfoil constant section is depicted in the Figure

1. As it can be noticed, different elements will be the constituents of this wing: skin, rear

spar, front spar and stringers.

Figure 1: Elements used for the structural modelisation of the wing [1]

Different properties (density, Young’s modulus and Poisson’s ratio) have been associated

to the structural elements, which have been taken into account for the resolution of the

problem. They are presented in the Figure 2. These material relations are already given

in the mesh functions.

3
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The main objective is to look for a point where the z is 0, as the structure consists in

a symmetrical airfoil section. With 4 different points an interpolation can be done and

a point where the z is zero can be obtained, so the x position of this point is the shear

center position xSC . The result obtained is xSC ' 0.37, as shown in Figure 3.

Torsional and bending stiffness: For the calculation of these 2 parameters an initial

hypothesis is taken to find the matrix E (2x2) of the next system:{
T

M

}
=

{
GJ 0

0 EI

}{
dθ/dy

d2h/dy2

}
(1)

The assumptions taken are small displacements and deformations, which basically implies

small angles and linear elasticity. It also is considered that the effective response can

be described by elemental beam theory presented on the Equation 1. Since it is not

guaranteed that bending and torsion are structurally uncoupled, the following constitutive

relation is used to solve the problem instead, where the 2x2 matrix correspond to E−1.{
θ
′

h
′′

}
=

{
S11 S12

S21 S22

}{
T

M

}
(2)

where S11 = θ
′
/T , S21 = h

′′
/T 1, S12 = θ′/M = −θ′′/Q, S22 = h

′′
/M = −h′′′/Q2

Firstly, is determined the θ
′

for points between 0.2b and 0.8b, where b is the span of the

wing, in order to avoid distortions on the averaged twist, and also considering different

stations of the chord of the airfoil. Those points are: 0, c/4, 0.6c and c. This derivative

has been obtained with the polyfit function for each section and applying also the next

expression:

θ = arctan(θ
′
) (3)

By doing this polyfit of first order (it would be equivalent to a linear regression of the

points), it i possible to find the slope of the interval, which is the mean variation of θ.

The second order derivative, is calculated through a second order polyfit. For the h, a

similar procedure is used, although for this case, a third order polyfit is necessary due to

the calculation of the S22 term. The procedure is also repeated for each section, just as

the θ case. Nevertheless, the forces need a special treatment commented below.

The forces applied for the torsional case are applied at the center of the front spar and

rear spar (0.25c and 0.6c) with a value of 100N in opposite senses.

In order to apply a shear load in the shear center, it is needed the treatment of replacing

this load by applying it at a different point and adding a compensating torque, since the

1S11 and S21 from applying a torsional load (M=0)
2S12 and S22from applying a pure shear load (T=0, M’=-Q)

5
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shear center point is a non-existing node in the mesh used. The input value of Q has

been again of 100N.

Figure 4: Replacing of a shear load at a different point adding a compensating torque

Finally, once the values of S11, S12, S21 and S22 are obtained, it is able to determine the

elasticity matrix by just doing the inverse. The resultant matrix E has been:

E =

[
GJ 0

0 EI

]
=

[
874579.503 462.546

12881.944 25089.088

]
(4)

As it can be noticed, the values on the diagonal are significantly higher than the non-

diagonal terms, and although not being 0, the assumption of developing a correct process

up to this point is taken.

3.1.2 2D FEM analysis

For the 2D FEM analysis, the nodal coordinates, nodal connectivities, material properties

and material connectivities matrixes are needed for the treatment of the problem in

elements. These matrixes have been supplied by the professor. For the section properties

calculation, the process followed has basically been the one presented in the slides.

1. The coordinates and materials for each element composed of 4 nodes are obtained.

x
[e]
j = [x]([Tn]

(e,j)) (5)

2. Determination of the centroid coordinates is done as an average of the position of

the 4 nodes:

x[e] =
1

4

4∑
j=1

x
[e]
j (6)

3. The area of each element is determined, again as an average of the rectangular area

6
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formed by each pair of nodes (1-4,1-2) and (3-2,3-4):

a = x
[e]
1 − x

[e]
4 , b = x

[e]
2 − x

[e]
1 , c = x

[e]
3 − x

[e]
2 d = x

[e]
4 − x

[e]
3 (7)

A[e] =
1

2
(a× b+ c× d) (8)

4. The mass per unit length is calculated by using the element area, as well as the

density as:

m =
∑
e

ρ[e]A[e] (9)

5. The center of mass is obtained by using:

xcm =
1

m

∑
e

x[e]ρ[e]A[e] (10)

6. Finally, the inertia about the shear center per unit length is calculated as:

Isc =
∑
e

(x[e] − xsc)2ρ[e]A[e] (11)

3.1.3 1D Beam analysis

For the 1D Beam analysis, taking an element i formed by 2 nodes, the nodal coordinates,

nodal connectivities and length per element can be determined by using the following

procedure:

• Nodal coordinates:

[y]i = y(i) (12)

• Nodal connectivities:

[Tx]
(i,1) = i, [Tx]

(i,2) = i+ 1 (13)

• Length:

l[i] = y(i+1) − y(i) (14)

Computation of element matrices:

Once these lengths are calculated, computation of the stiffness and mass matrix are

possible as they are basically dependant on Torsional and bending stiffness obtained in

the 3D analysis, and the Inertia about the shear center and masses obtained in the 2D

analysis.

7
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Figure 5: Element matrices computation [1]

Please, notice that the diagonal terms of the stiffness second matrix should be 12 instead

of ĒI and -12 for the non-diagonal terms which contain ĒI.

Assembly of matrices: Global matrices calculation:

Once the element matrices [K [i]] and [M [i]] are computed, their assembly is done initial-

izing global matrices with 3 degrees of freedom (DoFS) per node, being the total number

of DoFs, N = 3(n+1) with θ, h, γ == h′ as DoFs. Then, using several for loops (element,

element node twice, degree of freedom twice), global matrices are computed.

3.2 Aerodynamics

For the aerodynamics section, the Lifting-line surface analysis is considered in order to

analyse the problem. This analysis consists on dividing the wing in elements, each one

as a horseshoe element that makes influence on the other ones for the static part of the

code.

On the other hand, for the dynamic part of the code, the implementation of Theodorsen’s

model is done.

8
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3.2.1 Steady Aerodynamics: Lifting-line surface analysis

The discretization is done by assigning a surface area for each element obtained as:

S[i] = l[i] · c (15)

A normal vector is associated to each element in a constant direction in z of n = [0, 0, 1].

Finally, the collocation point is computed at 3c/4 of each element.

Figure 6: Horseshoe element discretization [1]

Taking these indications into consideration, it is possible to calculate the following system

of equations:

[A][Γ] = −U∞[α]
A11 A12 ... A1n

A21 A22 ... A2n

... ... ... ...

An1 An2 ... Ann




Γ[1]

Γ[2]

...

Γ[n]

 = −U∞


α[1]

α[2]

...

α[n]

 (16)

where [A] is the aerodynamic influence coefficients matrix, Γ is the circulation supposed

as 1 initially for the system resolution, U∞ is an unknown and the α is the angle of attack

that will be later commented. The steps taken to calculate each item are done as follows:

1. Induced velocity at point x with vorticity Γ[i] = 1 calculation:

v
[i]
jk =

Γ[i]

4π

rj × rk
‖rj × rk‖2

(
l[i] · rj
rj
− l[i] · rk

rk
); rj = x− xj; l[i] = xk − xj (17)

9
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2. Aerodynamic influence coefficients matrix [A] calculation:

Aij = (v
[j]
12(x[i]) + v

[j]
23(x[i]) + v

[j]
34(x[i])) · n[i] (18)

3. Surface: With the surface calculation for each element presented in the Equation

15, it is possible to create a diagonal matrix with the surfaces lcoated in the diagonal

of a matrix S:

[S] =

S[1] 0

...

0 S[n]

 (19)

4. Angle of attack [α] calculation: In order to determine an expression for the

angle of attack, the aerodynamic model considers an interpolation matrix between

α and u. Then, for this specific probem:

α[i] = θ[i] =
1

2

[
1 0 0 1 0 0

]


θ(i)

h(i)

γ(i)

θ(i+1)

h(i+1)

γ(i+1)


=

[
I I

]{ u(i)

u(i+1)

}
(20)

then, applying the relation for n angles of attack:

{
α
}

=


α[1]

α[2]

...

α[n]

 =


I I 0 ... 0 0

0 I I ... 0 0

... ... ... ... ... ...

0 0 0 ... I I





u(1)

u(2)

u(3)

...

u(n)

u(n+1)


= [I]

{
u
}

(21)

3.2.2 Unsteady aerodynamics: Theodorsen’s model

The methodology used to analyse the flutter is the Theodorsen model [2] [3], developed

in 1935. Before starting the resolution of the problem, a series of parameters definitions

are needed:

b = c/2 a =
Xsc

b− 1
kT =

GJ

l
ωθ =

√
kT
Isc

µ =
m

πρ∞b2
(22)
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Where the ρ∞ is taken as 1.225kg/m3.

It is also needed the Theodorsen’s function, which is a transfer function that accounts

for attenuation by the wake vorticity. The approximation used is in the form of: C(k) =

F (k) + iG(k).

C(k) =
0.5k4 + 0.0765k2 + 1.8632 · 10−4

k4 + 0.0921k2 + 1.8632 · 10−4
+ i
−0.1080k3 − 8.8374 · 10−4k

k4 + 0.0921k2 + 1.8632 · 10−4
(23)

Where k is defined as the reduced frequency k = ωb
U∞

, which contains two unknowns of

the problem.

As in the case of steady aerodynamics, a system coupling is needed through the defined

matrices given in Section 3.3. However, in this case it is also required an extra column

of zeros to adjust the dimensions of the problem.

For the definition of the system of equations to solve, it is also needed the A matrices

definitions given by:

[
ÂR(k)

]
= k2

[
1/8 + a2 a

a 1

]
+ kG(k)

[
2a2 − 1/2 2a+ 1

2a− 1 2

]
+ F (k)

[
1 + 2a 0

2 0

]
[
ÂR(k)

]
= k2

[
M̂ ′

]
+ kG(k)

[
Ĉ ′

]
+ F (k)

[
K̂ ′

]
(24)

[
ÂI(k)

]
= k

[
a− 1/2 0

1 0

]
− kF (k)

[
2a2 − 1/2 2a+ 1

2a− 1 2

]
+G(k)

[
1 + 2a 0

2 0

]
[
ÂI(k)

]
= k

[
Ĉ ′′

]
− kF (k)

[
Ĉ ′

]
+G(k)

[
K̂ ′

]
(25)

Once this procedure is done, an adjustment on the parameters of the mass and stiffness

matrices is also required, so the dimensions of the different elements are consistent. The

steady matrices K and M are adjusted3 as a consequence as:

[
M̂

]
=

[
M

]
mb2

(26)

[
K̂
]

=

[
K
]

mωθb2
(27)

Wherem stands for the total mass per unit length. Finally, having the non-dimensionalised

matrices, the system obtained in function of the defined parameters is the following:

3It has also been necessary to add a diagonal term close to 0 to allow the computation of the K matrix
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(
[
K̂
]−1 [

M̂
]
+µ−1

[
K̂
]−1

(
[
M̂ ′

]
+ ik−1(

[
Ĉ′′

]
− (F (k)+ iG(k))

[
Ĉ′

]
)+ k−2(F (k)+ iG(k))

[
K̂′

]
−λ[1])

{
x
}

=
{
0
}

(28)

or, re-expressing the left-hand side term with the matrix D:

(
[
D̂(kF )

]
− λ[1])

{
x
}

=
{

0
}

(29)

At this point, it is possible to impose the flutter condition, so the unknowns of the

problem can be determined following the procedure which is going to be explained in the

Section 3.4.2.

3.3 Systems coupling

3.3.1 Force vector assembly

Once the aerodynamic part is determined, it is possible to assembly the element force

vector through the definition of a [Q] matrix formed by Q
[i]
1 and Q

[i]
2 as:

Q
[i]
1 =

1

2

 e

1

l[i]/6

Q[i]
2 =

1

2

 e

1

−l[i]/6

 (30)

[Q] =
1

2



Q
[1]
1 0 ... 0

Q
[1]
2 Q

[2]
1 ... 0

0 Q
[2]
2 ... 0

... ... ... ...

0 0 ... Q
[n]
1

0 0 ... Q
[n]
2


(31)

Then, the element force assembly matrix is calculated as:

[F (u)] = −1

2
ρ∞U

2
∞[Q][S][A]−1[I][u] = q∞[Ka] (32)

as q∞ = 1
2
ρ∞U

2
∞ and [Ka] = [Q][S][A]−1[I][u].

3.4 Resolution of the system

Once the aerodynamic matrix is obtained, the boundary conditions to the total stiff-

ness matrix are applied, basically meaning that the torsion angle at the fixed extreme

12
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(corresponding to the first term of the matrix) is 0. The aerodynamic matrix, is also

adjusted by adding to it a diagonal matrix with non-zero values but very close to it, in

order to avoid obtaining discontinuities when solving the system. The matrices are also

non-dimensionalised with the dynamic pressure to avoid additional terms multiplying the

system.

3.4.1 Divergence condition

To obtain the divergence condition [4] [5], what is wanted is to equalize to zero the

eigenvalues of the system. For the problem it is obtained that:[
K̂s

]{
u
}

+ q̂
[
K̂a

]{
u
}

= 0 (33)

By multiplying both sides of the equation with the [K̂−1a ] term, the system can be re-

structured as:

(
[
K̂−1a

] [
K̂s

]
+ q̂

[
1
]
)
{
u
}

= 0 (34)

Then, the divergence condition is determined by setting:

det(
[
K̂−1a

] [
K̂s

]
+ q̂

[
1
]
)
{
u
}

= 0 (35)

taking the divergence dynamic pressure as the minimum eigenvalue obtained applying

the previous condition. Finally, once the dynamic pressure is obtained, the speed can be

directly calculated as follows:

uD =

√
2 · q̂D · qDanalyt

ρ∞
(36)

where qDanalyt = π2

4b2
GJ

ceCl,α
corresponds to the analytical solution used to non-dimensionalise

the divergence dynamic pressure.

3.4.2 Flutter condition

Starting from the Equation 29, the flutter condition [2] [3] can be obtained in terms of

λF and kF , which are defined as follows:

λF =
ω2
F

ω2
θ

=
ω2
R − ω2

I

ω2
θ

+ i
2ωRωI
ω2
θ

(37)

kF =
ωF b

UF
=
ωRb

UF
+ i

ωIb

UF
(38)
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Figure 9: Z position along the span

As it can be seen, the Z position of the section increases with the span. As the main

objective is to see the overall tendency, the tip (where the forces are being applied) and

the joint (where the wing is fixed), are not shown, since at these points the variation

doesn’t follow the same tendency.

Figure 10: Shear load case

This Figure 10 shows a representation of the system under shear load conditions in order

to observe the tendency of it.
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Figure 12: Z position along the span

Figure 13: Torsional load case

The Figure 13 shows a representation of the system under torsional load conditions in

order to observe the tendency of it. Notice that the effect in the free-tip is higher than

the clamped one.
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4.2.2 Divergence speed for different Aspect Ratios

The Figure 24 shows the tendency of the divergence speed when changing the Aspect

Ratio.
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e
e

d

Divergence speed

Figure 24: Divergence speed (m/s) for different wing Aspect Ratios

As it can be seen, when increasing the Aspect Ratio of the wing, the divergence speed

decreases, approaching the 0 value as the Aspect Ratio increases. This result shows that,

when the span is large enough, any variation in the wing instantly creates the divergence

condition, and thus, the wing would be certainly uncontrollable.

For the most critical situation it would be inside the ranges of a typical commercial

aircraft. For instance, in the case of an Airbus A320, which has an AR of approximately

10.3, the cruise speed is of the 830km/h order, being below the 1000km/h where the

divergence phenomena would appear. However, this does not always happen. Then, it

would be interesting to find tools to avoid this kind of condition as, generally, divergence

is a non-desired effect. Making stiffer structural elements would be a solution, although

this stiffness increase it is usually achieved in expenses of having more weight on the

aircraft. So, it’s always a trade-off depending on the application and ranges of operation

of the aircraft.
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4.2.3 Stability plots for flutter

The calculation of the Flutter speed is developed by using the Theodorsen’s model 3.2.2

and applying the resolution explained in 3.4.2. Taking this into account, the multiple

solutions that give the lowest velocity are shown in the Figure 25.
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Figure 25: Imaginary parts of λ vs κ

By forcing the imaginary part of λ to be 0, the flutter speed is obtained: 218.7 m/s.

At this velocity, the system will make a transition from stability to instability achieving

the aforementioned flutter. As it can be seen, the order calculated is similar to the one

obtained for the divergence for relatively slender wings.

In the Figure 26, the velocity vs κ evolution is represented. Following the Equation 38, it

can be seen how the tendency of increasing κ while decreasing the speed is accomplished.
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Figure 26: Velocity (m/s) vs κ

5 Conclusions

Once the results are obtained, some conclusions can be extracted about the project. The

results obtained are generally outputs expected from what the theory and problems given

in class have presented. The orders for the velocities and the tendencies achieved seem to

have logical values. All the demanded results presented in the requirements are obtained

and justified accomplishing with the aim and scope of the project. The code obtained is

an interesting tool that could be used to verify and test future developments, based on

the concepts presented here: basically divergence and flutter speed for both steady and

unsteady aerodynamics. Some improvements for the development could pass from work-

ing with more sophisticated aerodynamic methods such as Vortex Lattice, where instead

of using only one horseshoe vortex per wing, as in LLT, it uses a lattice of horseshoe vor-

tices. For the dynamic part it could also be interesting to consider other methodologies,

apart from the Theodorsen’s one presented taking care of the computational cost they

would require. Additional considerations on the structural part could also be considered,

for instance improving the mesh input of the program with a more detailed structure,

adding more complex or detailed elements to the mesh, among others.
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1. Introduction 
The aeroelasticity phenomenon is a critical design point in different industries. Nowadays, it is 

not just a phenomenon of interest for increasing the safety in the aerospace industry, but it is 

also critical for designing more efficient wind turbines, or even it is applied in the motorsport 

industry for achieving better aerodynamic performance of the race cars. 

This phenomenon is based on a coupling between the structural deformation of certain 

aerodynamic surfaces and its effects in the aerodynamic forces. Achieving a feedback loop that 

may blow the stability of the system depending on the design and the boundary conditions. 

It can be studied using different approach, on one hand, it is possible to build a model with 

certain mechanical and aerodynamics configuration a test it on a wind tunnel. This may result in 

highly accurate results of certain geometry, but it will not be very cost-effective, as many models 

might be manufactured to study different configurations and their effects.  

On the other hand, it is possible to model this event using different degrees of complexity. The 

most accurate solution may be using a complete CFD of the element with a Finite Element 

structure that is deformed dynamically under certain conditions. As in the previous case, this 

will result in accurate solution of the problem, but it will be high computational and engineering 

expensive. There exist simplified models that are suitable for understanding the causes and the 

effects of different parameters, concretely they can be divided into two parts, the quasi-static 

model, the structure is modelled using static beam elements and the aerodynamic is modelled 

using a horseshoe potential model. The dynamic model is based on dynamic beam elements 

structural modelling and the aerodynamics are modelled using the Theodorsen’s aerodynamics 

model. 

This study proposes a virtual testing environment based on a simplified beam modelling for the 

structural part, whose properties will be extracted from a detailed finite element analysis of the 

whole wing structure. And the aerodynamics will be modelled using the horseshoe method for 

analysing the divergence condition and the Theodorsen’s aerodynamic model for analysing the 

flutter stability condition. 

  

173





 

 
Advanced Aeroelasticity: Project 

 

5 
 

After finding the shear centre, two load cases will be used to determine the bending and torsion 

stiffness of the beam. To do so a polynomial fitting of the central nodes’ deformation will be 

used as shown in figure 2. 

 

Figure 2: Deformation fitting using 1D beam elements. Torsion case. 

The equations that determine the equivalent beam properties, supposing that there is not 

twisting bending coupling, are: 

𝐸𝐼̂ = −

𝜕3ℎ
𝜕𝑦

𝑄
;          𝐺𝐽̂ =

𝜕𝜃
𝜕𝑦

𝑇
 

Once the equivalent beam structural properties are obtained, the inertial properties must be 

determined, to do so the polar inertia of the section, the mass per unit length and the centre of 

gravity position must be obtained. They will be obtained by integrating the mass of each element 

using the following expressions: 

𝑚̂ = ∑𝜌[𝑒]𝐴[𝑒]; 𝑥𝑐𝑚 =
∑𝑥[𝑒]𝜌[𝑒]𝐴[𝑒]

𝑚
; 𝐼𝑐𝑚̂ = ∑(𝑥𝑐𝑚 − 𝑥[𝑒]) ^2 𝜌[𝑒]𝐴[𝑒] 

Finally, those magnitudes can be scaled by using the chord size at each section using the 

following expressions: 

𝐸𝐼[𝑒] = 𝐸𝐼̂ ⋅ (
𝑐[𝑒]

𝑐̂
)

4

;   𝐺𝐽[𝑒] = 𝐺𝐽̂ ⋅ (
𝑐[𝑒]

𝑐̂
)

4

;   𝑚[𝑒] = 𝑚̂ ⋅ (
𝑐[𝑒]

𝑐̂
)

2

;   𝐼𝑐𝑚
[𝑒]

= 𝐼𝑐𝑚̂ ⋅ (
𝑐[𝑒]

𝑐̂
)

4
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And then it is possible to obtain the elemental matrices as: 

[𝐾][𝑒] =
𝐺𝐽[𝑒]

𝑙[𝑒]

[
 
 
 
 
 
+1 0 0
0 0 0
0 0 0

−1 0 0
0 0 0
0 0 0

−1 0 0
0 0 0
0 0 0

+1 0 0
0 0 0
0 0 0]

 
 
 
 
 

+
𝐸𝐼[𝑒]

(𝑙[𝑒])3

[
 
 
 
 
 
 
0 0 0
0 12 6𝑙[𝑒]

0 6𝑙[𝑒] 4(𝑙[𝑒])
2

0 0 0
0 −12 6𝑙[𝑒]

0 −6𝑙[𝑒] 4(𝑙[𝑒])
2

0 0 0
0 −12 −6𝑙[𝑒]

0 6𝑙[𝑒] 4(𝑙[𝑒])
2

0 0 0
0 12 −6𝑙[𝑒]

0 −6𝑙[𝑒] 4(𝑙[𝑒])
2
]
 
 
 
 
 
 

 

[𝑀][𝑒] =
𝑙[𝑒]

2

[
 
 
 
 
 
𝐼𝑐𝑚 + 𝑚𝑑2 𝑚𝑑 0

𝑚𝑑 𝑚 0
0 0 0

         0           0  0
0 0 0
0 0 0

         0           0  0
0 0 0
0 0 0

𝐼𝑐𝑚 + 𝑚𝑑2 𝑚𝑑 0
𝑚𝑑 𝑚 0
0 0 0]

 
 
 
 
 

;    𝑑 = 𝑥𝑠𝑐 − 𝑥𝑐𝑚 

2.2. Aerodynamic model 
Two different aerodynamic models will be used depending on the type of analysis that will be 

performed, if the analysis objective is determining the divergence modes the horseshoe method 

will be used. Whereas, if the analysis objective is determining the flutter condition, the 

Theodorsen’s aerodynamic model will be used. 

2.2.1. Horseshoe method 
The horseshoe method is based on the extension of the discrete vortex for a 2D airfoil analysis, 

it is based on constant vortex lines that have an attach part at the aerodynamic centre of each 

section and two unattached vortex that are parallel to the free stream velocity. As in the 2D 

airfoil analysis each section has a collocation point where the flow through the surface must be 

zero obtaining the following system of equations: 

(∑(𝑣12
[𝑗]

+ 𝑣23
[𝑗]

+ 𝑣34
[𝑗]

)

𝑛

𝑗=1

|𝑥=𝑥[𝑖] + 𝑈∞) · 𝑛[𝑖] = 0 

Which can be written in matrix form: 

[𝐴]{Γ} = −𝑈∞{𝛼} 

Then the lift contribution of each element is: 

𝐿[𝑖] = 𝜌∞𝑈∞𝑆[𝑖]Γ[𝑖] → [𝐿] = −2 ⋅ 𝑞∞[𝑆][𝐴]−1{𝛼} 

Where S is a diagonal matrix with the aerodynamic surface of each element. 

And the torsional moment of each element is: 

[𝑀𝑠𝑐] = [𝐿]𝑑 
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2.2.2. Theodorsen method  
The Theodorsen method is based on a linear approximation of the 2D airfoil wake dynamics 

based on the coupling of the different degrees of freedom of the model and the Theodorsen’s 

transfer function that accounts the attenuation by the wake vorticity.  

𝑙[𝑖] = 𝜋𝜌 ∞𝑏2(𝑈∞𝜃 − 𝑏𝑎𝜃 − ℎ) + 2𝜋𝜌 ∞𝑈 ∞𝑏𝐶(𝜅) (𝑈∞𝜃 + 𝑏 (
1

2
− 𝑎)𝜃 − ℎ) 

𝑚𝑠𝑐 = −𝜋𝜌∞𝑏3 (𝑈 ∞ (
1

2
− 𝑎) 𝜃 + 𝑏 (

1

8
+ 𝑎2)𝜃 + 𝑎ℎ) + 

+2𝜋𝜌 ∞𝑈 ∞𝑏2𝐶(𝜅) (𝑎 +
1

2
) (𝑈∞𝜃 + 𝑏 (

1

2
− 𝑎) 𝜃 − ℎ) 

Where 𝐶(𝜅) is the Theodorsen transfer function and 𝜅 is the reduced frequency: 

𝐶(𝜅) = 1 −
0.165

1 −
𝑖0.0455

𝜅

−
0.335

1 −
𝑖0.3
𝜅  

;    𝜅 =
𝜔𝑏

𝑈∞
 

The Theodorsen function can be written in complex form as: 

𝐹(𝜅) =
0.5𝜅4 + 0.0765𝜅2 + 1.8632 ⋅ 10−4

𝜅4 + 0.0921𝜅2 + 1.8632 ⋅ 10−4
;   𝐺(𝜅) =  

−0.1080𝜅3 − 8.8374 ⋅ 10−4𝜅

𝜅4 + 0.0921𝜅2 + 1.8632 ⋅ 10−4
𝑖 

Finally, it is possible to write the Theodorsen aerodynamic model in matrix form for each 

element as: 

[𝐴𝑅̂(𝜅)]
[𝑒]

= 𝜅2 [

1

8
+ 𝑎2 𝑎 0

𝑎 1 0
0 0 0

] + 𝜅𝐺(𝜅) [
2𝑎2 −

1

2
 2𝑎 + 1 0

2𝑎 − 1 2 0
0 0 0

] + 𝐹(𝜅) [
1 + 2𝑎 0 0

2 0 0
0 0 0

] 

[𝐴𝐼̂(𝜅)]
[𝑒]

= 𝜅 [
𝑎 −

1

2
 0 0

1 0 0
0 0 0

] − 𝜅𝐹(𝜅) [
2𝑎2 −

1

2
 2𝑎 + 1 0

2𝑎 − 1 2 0
0 0 0

] + 𝐺(𝜅) [
1 + 2𝑎 0 0

2 0 0
0 0 0

] 
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2.3. Discretization 
Once the elemental matrices have been defined, it is time to discretize de problem using the 

following method. A staggered mesh will be used using the structural nodes as center of the 

aerodynamic element as shown in the following figure, two extra nodes will be added at the 

fuselage and at the wing tip. 

 

Figure 3: Wing discretization using staggered mesh. In green: Elastic axis and structural nodes 

position. In blue: horseshoes of each aerodynamic element. In grey: rectangular wing 

representation. In black: Fuselage boundary condition (it can be considered as a symmetry 

plane). 

As it can be seen, at wing tip and at the symmetry plane, an extra aerodynamic element with 

null effective surface must be added to have the same number of nodes. 

2.3.1. Aerodynamic symmetry condition 
It is possible to account for the aerodynamic symmetry condition by creating a fictitious 

symmetric aerodynamic mesh that will be reduced using the symmetry conditions as: 

Γ(𝑦) = Γ(−𝑦) → 𝐾𝑎𝑒𝑟𝑜𝑠𝑦𝑚
[𝑖,𝑗] = 𝐾𝑎𝑒𝑟𝑜

[
𝑁𝑒𝑙𝑒𝑚

2
+𝑖,

𝑁𝑒𝑙𝑒𝑚
2

+𝑗]
+ 𝐾𝑎𝑒𝑟𝑜

[
𝑁𝑒𝑙𝑒𝑚

2
+𝑖,

𝑁𝑒𝑙𝑒𝑚
2

−𝑗+1]
;  𝑖, 𝑗 = 1:𝑁𝑒𝑙𝑒𝑚 

If 𝐾𝑎𝑒𝑟𝑜is a 4x4 matrix, then 𝐾𝑎𝑒𝑟𝑜𝑠𝑦𝑚
 will be 2x2 matrix with the following values: 

𝐾𝑎𝑒𝑟𝑜 = [

𝐾11 𝐾12

𝐾21 𝐾22

𝐾13 𝐾14

𝐾23 𝐾24

𝐾31 𝐾32

𝐾41 𝐾42

𝐾33 𝐾34

𝐾43 𝐾44

] → 𝐾𝑎𝑒𝑟𝑜𝑠𝑦𝑚
= [

𝐾33 + 𝐾32 𝐾34 + 𝐾31

𝐾43 + 𝐾42 𝐾44 + 𝐾41
] 
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2.4. Divergence 
The divergence condition is a quasi-static aero-elastic phenomenon that occurs when the 

following conditions is satisfied: 

([𝐾𝑎𝑒𝑟𝑜]
−1[𝐾] − 𝜆){𝑥} = 0 

In our problem the inverse of the aerodynamic matrix does not exist as there are rows and 

columns with null values, then the inverse problem must be solved: 

([𝐾]−1[𝐾𝑎𝑒𝑟𝑜] −
1

𝜆
) {𝑥} = 0 

The main disadvantage of solving the inverse problem is that there will appear other eigenvalues 

associated to the diagonalization of the stiffness matrix that are not related with the divergence 

problem, that is caused by a torsion in the wing. 

2.5. Flutter 
The flutter condition is a dynamic aero-elastic phenomenon that occurs when the following 

conditions is satisfied: 

(−
𝜔2

𝜋𝜌∞𝑏2𝑈∞
2

[𝑀] + 
1

𝜋𝜌∞𝑏2𝑈∞
2

[𝐾] − ([𝐴𝑅̂(𝜅)] + 𝑖[𝐴𝐼̂(𝜅)])) {𝑥} = {0} 

Which can be converted to an eigenvalue problem using the adimensionalization as: 

([𝐾̂]
−1

([𝑀̂] + (𝜅−2 ⋅ 𝜇−1)([𝐴𝑅̂(𝜅)] + 𝑖[𝐴𝐼̂(𝜅)])) − 𝜆) {𝑥} = 0 

Where the solutions of this eigenvalue problem are: 

𝜔 =
𝜔𝜃

√𝜆
;     𝑈∞ =

𝑏𝜔

𝜅
 

In fact, the flutter condition occurs when: 

min(𝑈∞ > 0 & 𝐼𝑚(𝜔 = 0)) 
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3. Implementation
In this section an analysis of different parameters will be assess. Starting with the divergence 

condition and finally the flutter phenomena. 

3.1. Divergence condition 
In this section a detailed analysis of the divergence phenomena will be done, the first step will 

be analysing the divergence eigenmodes that appear in a simple rectangular wing. Then, a 

detailed analysis on the wing aspect ratio will be done. To continue, the swept wing angle effect 

will be analysed. Finally, a trapezoidal wing will be simulated. 

3.1.1. Torsion eigenmodes 
As the aerodynamic matrices are only dependent on the torsion angle, the only eigenmodes that 

will be analysed are the ones that have a non-null distribution of torsion angles. However, when 

solving the eigenvalues problem other bending eigenmodes will appear they are not related with 

the divergence effect. Concretely the case that will be analysed is a constant chord wing with an 

aspect ratio of five. 

Figure 4: Divergent conditions first 5th torsion eigenmodes, AR=5. 

With this wing configuration, it can be seen that the first possible eigenmode correspond to the 

second wing mode, as it has one relative maximum and minimum.  
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3.1.2. Aspect ratio sensitivity 
After a detailed overview of the shape of the eigenmodes, the wing aspect ratio will be analysed 

making a sweep through a range between one and twenty. 

Figure 5: Divergence speed of the first divergence mode aspect ratio sensitivity. 

It can be seen a tooth shaped curve; this is caused by making infeasible the first modes when 

increasing the aspect ratio as shown in the figure x. The first feasible eigen mode of the first 

curve is a single relative maximum, while in the second tooth it is a relative minimum and a 

relative maximum, finally the last tooth is a 3-relative maximum-minimum shape. 

Figure 6: First divergence eigen modes at different aspect ratios. 

181



Advanced Aeroelasticity: Project 

12 

3.1.3. Swept wing 
A similar study has been performed with a swept wing. A similar effect is seen when increasing 

the swept angle, this may be caused by an increment of the structural elements length a thus 

reducing the structural stiffness. 

Figure 7: Swept wing first mode divergence speed. Wing AR of 10. 
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3.1.4. Trapezoidal wing 
The last wing shape analysis that has been performed is a modification of the wing tip and root 

chords while maintaining the aspect ratio constant (AR=10) and the mean aerodynamic chord 

constant (𝐶𝑚𝑎𝑐 = 1). The obtained results are shown in the following figures. 

Figure 8: Divergence speed for different wing tip chord ratios. AR=10. 

It can be seen that there exists an optimal wing tip ratio when the divergence speed is maximum 

in the range between one and 4.5. After that point, a change in the first feasible divergence 

mode is achieved increasing the divergence speed. 

Figure 9: Divergence torsion modes for different wing tip chord ratios. AR=10. 
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3.2. Flutter condition 
The flutter problem will be solved iteratively using a range of 𝜅 between 10-3 and 101 obtaining 

the following figure. 

Figure 10: Flutter map for a 7 elements mesh and wing AR of 10. 

As it can be seen the modes are not perfectly ordered due to the ordering factor used, the 

freestream velocity. In this graph, it can be seen that there are a few modes that are always 

stable, the imaginary component of the 𝜔 is always positive, and some others that for big 𝜅 and 

low speed they are stable and at certain point this stability is lost reaching negative values. 

Concretely, the flutter condition will occur when the first mode crosses the x axis line. 

Figure 11: Flutter condition for a 7-element mesh and a wing aspect ratio of 10. 
Flutter speed of: 𝑈∞𝑓

= 241.07 m/s, and 𝜅 =  0.3424.
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4. Conclusions
During this study, it has been proven the feasibility of studying the divergence and flutter 

phenomena using simple structural and aerodynamic models while capturing the principal 

causes and effects of those phenomena and the key design parameters. 

The self-implemented MATLAB software has shown a good performance on modelling 

aeroelastic cases. 

It has been seen that the divergence is very dependent on the geometric parameters of the 

wing, modifying the apparition of the first’s divergence modes. Also, the flutter phenomenon 

has been more difficult to assess due to the randomness of the apparition of the modes, making 

difficult the tracking of the imaginary part of the flutter frequency. 
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