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Control surface reversal condition for a wing

Consider a flat plate on a wind tunnel clamped on one side and free on the other, simulating a wing
during flight conditions. The plate has a rigidly attached control surface, the position and size of
which are determined by the parameters 1) and 8, as depicted in Figure 1. This control surface can be
deflected an angle § (6§ > 0 downwards) in order to increase the total lift on the plate. The plate has
an aspect ration AR = 6 and the chord size is ¢ = 400 mm. From a structural test, it has been
determined that the plate’s effective stiffness to a torsional load is GJ = 38 kN m? and its elastic axis
is located at 0.35¢ from the leading edge.
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Figure 1.

In this context, we want to determine a position and size for the control surface and, to do so, we
require information regarding the control surface reversal condition for different combinations of 8
and .

To this end, a report with the following information is requested:
(@) The divergence speed Uj, of the plate.

(b) A plotwith the first 5 modes of the elastic twist associated to their corresponding divergence
speeds.

(c) A plot of Uy /Up vs. nn for p ={0.5,0.6,0.7,0.8,0.9} (Ug is the speed at control surface
reversal conditions).

(d) Adiscussion on the possible sets of values of f and 1) for which:

(d.1) Surface control reversal conditions can be avoided.
(d.2) Ug/Up > 0.5.

Note: The use of plots to support the discussion is highly advised.

1of2



The report in PDF alongside the code files used to solve the problem must be submitted to Atenea
before 17/11/2020 23:59 in a single compressed ZIP file.

Notes:

Use lumped panel elements to discretize the plate.
It can be assumed that all the angles are small and that the panel’s section satisfies the
requirements for thin airfoil theory to be applied.
Make sure your code files are well commented (i.e. insert comments to make clear what you
are trying to do).
Make sure all the requested results can be clearly identified in your report.
Add a detailed and comprehensive description of how you have proceeded to solve the
problem. Do not repeat procedures already done in the lectures. However, if you use some of
these procedures to obtain some result, you should indicate so and refer to the section from
where they come from (e.g. "The procedure ... from page(s) ... in the lecture notes ... has been
used to obtain ...” or “"Result ... from problem ... is used here to ...”). Also, the report should
never contain descriptions of the code (these should be either included as comments in the
code itself or, if required, as an appendix to the report). Any additional development or
deviation must be explained.
Private e-mails regarding the assignment will not be answered. If you have any questions you
must post them publicly in the course’s forum in Atenea. In any case, | will not answer
questions regarding theory or methodology to solve the problem.
(Optional) You can add a section at the end of the report giving your personal thoughts on
the first part of the subject. You can answer questions like:

o How do you feel about the workload that this subject has required from you with

respect to the other subjects?
o Do you think the balance between theory and problems is OK?
o What are your thoughts regarding the scope of the theory? Should it be extended to
explore more topics in detail? Is it too condensed? Have you found it too easy/basic?
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Advanced aeroelasticity

1 Problem specification

The goal of this assignment is to discuss the reversal conditions and divergence of the wing
shown in Figure 2. It can be considered as a flat plate on a wind tunnel clamped on one side
and free on the other at flight conditions. The plate has a rigidly attached control surface,
the position and size of which are determined by the parameters v and b. For calculus

purposes the flight the density chosen for a typical flight level is p = 0.345331kg/m3.
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Figure 1: Wing

The wing has the following dimensions:
« AR =6.

e ¢ = 400mm.

o GJ=38KNm?

the elastic axis is located at 0.35c.

From these values and knowing that AR = b?/(c- b) it is obtained that the total span
b = 2400mm.

2 Divergence speed of the plate

From the structural point of view, our goal is to find the elastic twist angle, . When
the elastic twist tends to infinite the divergence condition will be found, to do so, the
lumped panel elements method has been used. The first step is to discretize the wing, the

discretization is the same as it has been done in Problem 3.
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Figure 2: Wing discretization

Doing equilibrium of moments and using the procedure from pages 3 to 4 from problem
4 the next expressions can be found. It is important to notice that the lift is not constant

and therefore we have two expressions of lift that can be expressed in the same line.
) cb . .
L(1) = ¢oo - —  (Cralao + (1)) + C1s - 5 - ¢(7)) (1)

Where,

‘ 1 if 0<i<nN
o(i) = (2)
0 if nN<i<N

Introducing this into the equilibrium expression we can obtain the same expression as in
Problem 3 page 5. As the term that depends on the deflection angle doesn’t multiply the

twist angle or structural stiffness the Q term becomes:

cbe cbe c?b
Q = Goo—0CLa + Goo—CL50 + Goo—Crnacsd (3)
n n n
And the general equation can be written as:
([Ks] = a[Ka{0} = {Q} (4)

As the divergence condition det(K(§)) = 0 doesn’t depend on the Q matrix the divergence

condition is the same as for a wing with no control surface.

72 GJ 1
- = V2 5
0= g2 ceClq 9P'D (5)
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Where Vp is the divergence speed of the plate. Isolating we can get:

2
Vp = quD =551.4 m/s (6)

3 Modes of the elastic twist

Finding the eigenvalues of equation 4 by doing the same procedure as in Problem 3 we
can plot the results. Figure 3 shows the modes of the elastic twist, the X-axis shows the
dimensionalized y position corresponding to the collocation points, the Y-axis represents
the eigenvectors stored in the matrix. The Matlab code used is the same as the one used
in class. As was expected, the results have a sinus and cosine behavior according to the

analytical solution.
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Figure 3: Wing discretisation
Each Eigenvector has an associated divergence speed.

e Mode 1: this is the lowest positive eigenvalue which is equal to 1, the associated

divergence speed is the one obtained in the previous section which is 551.4 m/s.
e Mode 2: Eigenvalue =9,qp=9-¢§ — Vp = 1.55€3

e Mode 3: Eigenvalue = 25, gp =25-§ — Vp = 2.56€3
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e Mode 4: Eigenvalue =49, gp =49-¢ — Vp = 3.61e3

e Mode 5: Eigenvalue = 84, qp =84 -¢ — Vp = 4.63e3

4 Control surface reversal conditions

The control reversal gives the name to a situation in which an increase in the control
surface’s deflection angle § causes the lift to decrease. Mathematically can be formulated

as:
oL
25 0 (7)

Reminding the obtained equation of the lift (equation 1) the partial derivative can be

done:

oL cb

a5 = 0=t (CLQ(%{@} +CLs - '¢(i)> (8)

Here we have all the values except the elastic twist matrix which has to be derivated.
The elastic, twist similarly as the previous section, can be obtained isolating it from the

equation of equilibrium (equation 4).

{0} = {Q}([Ks) — q[Ka]) ™ (9)
Then,
210y = DAQHI) — alKu) ! (10)
Where,
2
886{@} = qoo%clﬁ + QOo%meacé = QOo%b(CLée + Cmacéc) (11)

Introducing equation 11 into equation 10 and introducing it into equation 8 we can obtain

the following expression:

oL

% = (4oo %b (CLQQOOCZ)(CLJG + Cmac5c) : ([Ks] - Q[Ka])il + CL5 : ¢(Z)> =0 (12)

This equation is the beginning of a Matlab problem which I tried to solve but I couldn’t do
it. Form that equation and isolating gr/gp the control reversal function can be obtained,

therefore, the velocities as a function of 7.

10
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5 Discussion

Control reversal can be avoided with high values of 7, that’d mean reducing the control
reversal surface. The same happens with the § values, closer to 1 the chances of having
control reversal would be minimum. As a result, the negative pitching moment produced
by the control surface would be reduced.

Finally comment that when we have Ur/Up < 0.5 the deflection of the control surface

will result in a decrease of the lift, which is the opposite of what we expect.

6 Personal thoughts

From my point of view, I think that all the workload, theory classes, and problems are well
balanced. The best of having meet lessons is the support of the whiteboard, I think it’s
very useful to solve the problems and helps a lot. Theory classes are maybe too dense and
the 3 hours are maybe too long and since there are so many equations in the slides you
can be easily get lost. Regarding the problems solved in the class were very useful in order
to understand the theory despite they can be very long or mathematically complicated.

Regarding this assignment I personally regret choosing the assignment instead of the exam,
it has happened the same as in all the subjects, the demanded level when we do exams
online or project increases a lot. This assignment required mathematical skills with Matlab
that I don’t have and, with no chance of asking to you how to solve an equation, I couldn’t
finish it. Also, I found the mathematical development difficult as, in class, we didn’t see
how to get the reversal conditions of a wing. Doing a presencial exam I think I could have

gotten a better result explaining the theory and solving a similar problem.

11



clear
close all

m =

o°

0:1:10;
Initialize variables

= zeros(l,length(m));
= zeros(l,length(m));

i = l:length(m)

snumber of panels

n(i) = 2"m(i);

$Initialize matrices
Ks = zeros(n(i),n (1)
Ka = eye(n(i),n(i));
k = (4*n(i)"2)/ (pin2

$Number of elements/PANELS

$Error

)
%identity matrix
); %constante

$Stifness matrix coefficients
for j=1:n(i) %loop for each pannel

Ks(j,3) = k*3; %diagonal
if (i

Ks(j,Jj+1) = -k*1;

end

elseif j==n (1)

KS(]I]) = k;
Ks(j,J-1) = -k;

else
Ks(j,J) = 2*k;
Ks(j,J-1) = -k;
Ks(j,j+1) = -k;

end

end
%$Eigenvalues and eigenvalues

[V,L] = eig(Ka\Ks);

L = diag(L);

L = L(L>0); %obtain the indices which value is positive,

discard the negative

gD = min(L); %this is non dimensionalized!!!

$Error definition
e(i) = abs(1l-9gD);

i

12



end

figure

loglog(n,e);

grid on

grid minor

box on

xlabel ("Number of panels')
ylabel ('Relative error')

%$Defining collocation points to plot eigenvectors

y = [0, ((l:n(end))-1/2)/n(end),1]; %it i1s non diemsionalized; if we want
to give it a wvalue
figure $we jut have to multiply by span,b
hold on
for i=1:5
plot(y, [0;V(:,1);V(end,1)]); $Adding the boundary conditions
$first row twist angle = 0 bcz wing root, at the end
% V(end,i) bcz last co
end
box on
grid on

xlabel ('y/b")
ylabel ('"Eigenvector')
legend(lll,|2l,l3l,¥4l,l5');

o°
o

rho = 0.348331;

CLa= 2*pi;

GJ = 38000;

c = 400*107-3;
AR = 6;

b = c*AR;

e = 0.35*c;

gD = (pi*pi*GJ)/ (4*b*b*c*e*CLa) ;
for (i=1:5)

gbdim = L (i) *gD;
vel (1) = sqgrt(2*gbhdim/rho) ;

end
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CONTROL SURFACE REVERSAL CONDITION FOR A WING

For the resolution of this assignment it was considered a flat plate on a wind tunnel
clamped on one side and free on the other side, simulating a wing during flight
condition. Bearing in mind these annotations it has been considered that it has an
altitude of 10.000 m which gives a density of 0.4127 kg/m®. The problem refers to a
plate rigidly attached to a control surface, its position and size are determined by the
parameters n and B [see Fig. 1]. This term rigid is a relevant data which means
conditions that relies on elastic properties can not be considered (i.e. in [lecture 2
slide 26] there is a specific expression determined for rigid bodies). This control
surface can be deflected at an angle & ( & > 0 downwards ) in order to increase the
total lift on the plate. The aspect ratio of the plate is AR = 6 and the chord size ¢ =

0.4 m. The plate’s effective stiffness to a torsional load is also given, GJ = 38.000

N-m? (according to the theory from [lecture 3] G and J are recognized as Shear
modulus of material and Geometrical parameter respectively) and its elastic axis is
located at 0.35¢ from the leading edge, e = 0.14 m.

A o 77
,‘s\/(’

nb | (1—mb

Figure 1

This problem is solved using lumped panel elements which means discretization of
the plate/wing in terms of constant panels. A panel can be understood as an airfoil
interconnected to each other through torsional spring [lecture 3]. The aim is to
determine the position and size for the control surface and to do so, the information
regarding the control surface reversal condition for different combinations of n and 8
is required.

a. The Divergence speed U, of the plate

This part is solved following the procedure carried out in the problem 3 and as a first
approximation the following equation has been developed, which means that the
torsional spring between two panel is the difference between the elastic twist of two
panels divided by the distance:

15
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e(i),e(iﬂ) _ T([)
YO5,ED TGy
where:

) — D ) _ g1y =
T = K909 -00) = ct

Therefore:

In this equation, T is identified as internal torque by the relative torsion between two
panels and theory suggests to keep G and J constant values. From the previous
expression, the torsional stiffness of spring is also obtained which is K(;). It is
important to highlight that K(;) is not constant because the distance is not same as

K(;:N), this condition is applied only at the root. Regarding the control points, it is
required to add two extra nodes at root and tip (at the point internal torsional reaction
is null).

Continuously the equilibrium over the elastic axis in each panel i = {1...n} is applied
[lecture 3]:

M, 0 +L0e® - KO (80-6(-N ) - K.(+D (g1 - g+0) = 0
according to the theory at i=1, 8© = 0 (fixed root):
M, +L e - K Mg - K@ (8 - p@) = 0

and for i=n (point at which there is no torsional reaction), T™" = 0, 8™"=0™ (free
tip):

M, +LMe™ - K™ (g™M-g1 ) = 0
Due to the presence of a control surface, the properties do not remain constant
along the wing (from root to nb the properties are constant and from this point to tip
they differ, 1-nb) which leads to two slightly different lift expressions are obtained:

for constant properties M, ) = 0 (C,..=0):

L0 =q, C,_f Cy (0, +8Y)

16
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for non-constant properties, there is no sum up of 6 with & because of a rigid
structure, not elastic:

L0 =q. % [C.u(ay +8Y) + C_ 53]
C=2m

,a

— 1+3—2B2
CLs = 6T 35

Recalling the general equation of moment:
for constant properties M, ") = 0:
- K996 + (K O+K #-q, C—,f C,.e")80- K, gt = q_ ch Cy 0y
for non-constant properties:
M, O+ q, C—,f C .e"+q. % C_ "5 = [-q. C—,f C e + K0 + K1 180 - K 09+ -
K,

following the procedure of problem 3 [lecture 3], it is proved that:

qp = . G = _ v G
D 4p* ceCp, 4(c*xAR)? ce2m

U, = /22 = 473.5m/s

b. It is asked to plot the first five modes of the elastic twist associated to their
corresponding divergence speeds:

In order to obtain the plot of figure 2 the boundary conditions explained
previously have been set to “V” which stores eigenvectors. In the first row the
twist angle is zero because it corresponds to the root and at the end an
additional row is set because of a null torsional reaction which belongs to the
wing tip.

The divergence speed is obtained computing q, for the first five cases and
they are: [ 473.49; 1420.5; 2367.5; 3314.4; 4261.4].

Observing the vector, the divergence speed calculated in the previous section
can be located at the first position.
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Figure 2: Eigenvector of first 5 modes of the elastic twist

Observing the figure 2 it can be seen that all of them have the same
amplitude because of the matlab function “eig” that normalizes the values.
Their shape resembles sinus or cosine and this is expected.

0, =c1sin (2i-1)%

T
2

where “I” goes from 1 to 5 in this case and the term in blue marks the periodicity.

c. Ux/Upvs nis requested in this section for ;5= {0.5, 0.6, 0.7, 0.8, 0.9}

The control surface reversal condition is as follows:

dl =
dd O

L0 = q, 2L [C_ (0, + 89) + C_ 5]
if i>08&&i<nN

®=1
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ifn<i<N
®=0
deriving the expression of lift:

& =a.2[C

— 20 +C =0

La 88
Applying the equilibrium equation:
([KJ-7 [KJIHQ} = {Q}

{Q} = {Q}IK,]-7 [K.])"

where force is:
_ b b b
Q=q.%¢C_ 0,+9.<C P +q.*C_ .0

a{ﬁ=CLQ%(CL,ée"'CC

a 5)

mac,d
&= a.2(CL8. 2 (Cpge + € Crrpe DK [K])'+CsP) = 0

g.. has to be computed in matlab in order to obtain g; so that Ug/U, can be
computed.

d. Discussion on the possible sets of values of B and n:

Surface control reversal conditions can be avoided when n is high or 8 is
closer to 1, as a result the control reversal surface reduces. According to the
theory [lecture 2] Control reversal gives name to a situation in which an
increase on the control surface’s deflection angle, 6, causes the lift to
decrease therefore for the opposite case, control reversal would decrease.

19
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Personal Opinion

Personally | find this subject really interesting which can be justified by my decision
to select this speciality at first but | did not expect that the level that has been
presented and required would be doubled by the professors. When you explain the
concepts in class | more or less try to follow them and get to understand them at that
moment but due to my insufficient level of background on this subject, things get
really difficult for me to understand when solving problems on my own. My coding
background is not that good either but | am able to compute, more or less,
something that | understand well. | am not sure if the exam would have had the
same level as this assignment or easier but sincerely, after studying the problems
solved in the class | would be able to solve just the problems that are very similar to
the ones solved in class because of my insufficient knowledge in this topic. In this
assignment | have done my best, tried to understand some concepts relating one to
another but | am not pretty satisfied with what | am presenting. | could do better if |
had better knowledge. Regardless of having five or six more assignments for this
week, | dedicated a lot of time giving my best to solve this assignment. | also realized
that the colleagues who graduated from ESEIAAT, were able to solve the problem
probably they had done similar assignments back then. The fact that they have more
knowledge about aeroelasticity thanks to the subjects taught in graduation made me
feel bad because | could not. The planning of this master’s course says everybody is
welcome to join this course but once | was in, many professors said this master
course is designed for ESEIAAT students. | feel like they are not considering
students from other universities. Everyone is here because they are interested in
learning more but it will never happen without a little support from part of the
professors.

20
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Control surface reversal condition for a wing

Name: Jjl} OO Due Date: November 17, 2020
Assignment: (Mid-term Exam)

Problem

As a first approach to solve the problem, I have decided to model the wing by two
elastically connected surfaces (lumped panels), as shown in the following figure;

RURRRRN

U

Elastic axis

y Panel1 Panel 2 /\/

e Iﬂc

Ja-pe

A
\ 4
A
¥

Control Surface

AN

A
>

Figure 1: Wing with aileron panel discretization
Note that the surface of each panel is different as they are dependent of 7. The gaps
between panels are negligible and the torsional spring constants are equal to Kr (for this

simplified example). Also, as we are solving a flat plate we assume thin airfoil theory
and incompressible flow.

The free body diagram of our idealized wing is the following:

21
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T\ = Kr6,

Figure 2: Wing free body diagram

Where the aerodynamic forces acting on each panel are:

L1 = ¢uuSCla( + 61)
Ll - QOOSCla(aa + 02) + QOOSCIJ((so)

nduced momen due

0 con rol surface

(1)
(2)

Focusing on the panel with a control surface, it is important to take into account the

value of 3 as it has a dependence on the value of Cjs and Cymd.

This problem has been already solved in class and the results obtained are the following:

Cz,a =27
— 8-1
Cl,a = QWM
Cons = 35
m,0 — 7r:34‘13+2

Now we can sum moments about the elastic axis for each panel

Z My =0=Lie+ KT(62 - 91) — Krt,
Z M2 =0= LQe + KT(02 - 61) + QOOSCC]\4550

substituting equations (1) and (2) into (3) and (4) respectively:

5KT01 - QKT92 = qooSCla(ao + 01)

—2KT91 + 2KT92 = qooSC’la(ao + 62) + qooSCl(;(éo)

This set of equations written in matrix form is:

5 -2 91 1 0 01 o 1 Cl,‘; c
% 2l b Al = b6

2

w
~— ~—

~ N S
ot
~—
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where v = gineSeC 4.

Dividing both sides of the equation by K and defining an arbitrary non dimensional
parameter q as

inS Ca
1= = (12)
Kr Kr

the system becomes:

5 =2][6.] _[1 0] feu]  _1 (Cis  cCps\ |0
R R A R R C el N
We note that all the values of the problem are constant, «, and J, are inputs, independent

of 6; and 6.
Lets consider the following notation for the previous equation:

] - alieal g = (& (14)

where [Q;] are input loads and [;] the wing deformed system equilibrium state vector. If
we also add the following assumption

0,  [67 06

M = [95 156, (15)
where [06;] is the vector of perturbation twist angles, the equation in (13) can be rewritten
as follows for the existence of the perturbed equilibrium state

(K] {00:} = Q; — [Ky] {07} = {0} (16)
To satisfy the previous requirement, we need that the determinant of the stiffness matrix

become equal to zero. Regarding our simplification of the problem, the determinant of
the stiffness matrix is

V ([Ks] = q[Ka]) = ¢ =33 +1 (17)

The divergence condition then is obtained when computing the roots of this characteristic
equation. In this case: ¢p = 0.382 and ¢p = 2.618.

Here we interpret this roots as the eigenvalues of the problem and the smaller one is the
nondimensional divergence dynamic pressure.

1 Problem discretization

Now lets consider that instead of having two panels we have a succession of n panels to
idealize the wing.
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3Kt 2I{T 2K KT

Figure 3: Wing with aileron n panel discretization

We can easily find the stiffness matrix by following the procedure for the case with 2
panels. Note that now we consider different K7 for the inner, mid and outer panels.

Once the possible set of eigenvalues is computed, we can go back to our initial equation
system in order to determine the elastic twist distribution along the wing.

{6:} = [[Ks] - q[Ka)] 7 [Q] (18)
where each # is a function of the input parameters a, and §,. The effect of ¢, is only in

those plates with control surface, then for the plates without control surface we will only
have dependency of a,.

2 Divergence velocity

Once the non-dimensional dynamic pressure is computed, we can finally recover the
expression for the real dynamic pressure

oo = I0°5e
where the value of Kt is known as we are given the effective stiffness of the wing to a
torsional load. The expression of ¢, for incompressible flow is

(19)

1
o = Ep Voo (20)

And then the divergence velocity
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V= \/? (21)

For our case, considering that p = 1.255 kg/m3, the divergence velocity obtained for
in-compressible flow is:

Vp = 357.6 m/s

3 Twist angle configurations

Once we have obtained the g values, a plot of the twist angle distribution along the
entire wing can be computed for the divergence dynamic pressures. I have considered
here that the outer half part of the wing has control surfaces and the other one does not.
Also, we suppose that the aileron is the 30% of the total chord in order to compute the
different coefficients (then n = 0.5, beta = 0.7 and 100 panels). The results obtained are
the following:

The solution for the system eigen-vectors is:

0.15
0.1

005/

EigenVectors
o

-0.05

-0.1

_015 Il Il Il Il Il Il Il Il Il
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

y/b

Figure 4: First 5 modes of the elastic twist associated

And the twist distribution along the wing (solving system in Eq. 13 for the divergence )
is for the first 5 conditions of divergence:
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Figure 5: Twist distribution along the wing

We can see that as we do not have a wing with constant properties, the twist angle has
greater oscillations in the control surface part of the wing.

At this point it is important to mention that the accuracy of the results is directly
influenced by the number of panels selected. The velocity obtained is considering 100
panels. Considering less, the error on the divergence dynamic pressure will be higher
and then the velocity will not be accurate.

4 Reversal velocity

The total lift generated by the wing is

Lfle:c — Z Lz = f(eu aoéo) (22)

As the purpose of the aileron is to generate lift, the reversal condition then will happen
when this L., becomes zero.

Lﬂex = L1 + L2 = QSCLQ (01 + 92) + QSCL550 (23)

where the twist angle is a function of ¢.

Then, computing the values of ; as a function of § we can find a new polynomial with
the same order as panels and we will just repeat the procedure done for the divergence
dynamic pressure. Which means, finding the non-dimensional dynamic pressure that
makes the total lift be equal to zero and compute the corresponding reversal speed using
equation (20). For the simple example of two surfaces:
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Until now, I will consider only 10 panels in order to make the calculation process of
the total lift. This is due to the use of symbolic variables inside matrices, and the
manipulations of them is so slow.

5 Reversal vs Divergence velocity

Following the previous procedure to compute the control reversal condition for the
aileron, the following results have been obtained for different configurations of n and £:

We can note that for a given value of 3, as we increase the area of the wing without
control surface, the reversal speed becomes greater and those the Ur/Up factor. This
is normal because we are reducing the aileron area and then its influence over the wing
reversal condition.

Also we see that as we increase of 3, the Ugr/Up factor value becomes smaller. this is
due to the same reason as before, the aileron is smaller.

0.55

0.5

0.45

035

0.3

025 Il Il Il Il Il Il Il
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

n

Figure 6: Twist distribution along the wing

6 Discussion

6.1 Avoid reversal

Between the low speed range where the aileron works as intended and the high speed
range there is one speed point where the rolling moments of the aileron and the wing
twist cancel each other out. There is where reversal occurs. To avoid this we can set
the speed at which full aileron deflection produces only a quarter of the rolling moment
coefficient as we will never exceed speed. In terms of n and 3, a trivial solution is to
consider that we do not have a control surface, which means n =1 and § = 1.

7
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6.2 UR/UD > 0.5

From the plot in figure 7, this condition is achieved for:
e values of 8 bigger than 0.5 but minor than 0.9.

e values of 1 bigger than 0.5 (aprox) and minor than 0.85

055

05

0.45 -

035

——3=05
—3=06
B=07
03F

£5=0.8]
3=0.9
= = =datal

025 I I I I I I
0.1 0.2 0.3 0.4 0.5 06 0.7 08 0.9

n

Figure 7: Twist distribution along the wing

7 Feedback

In general I consider that this exercise has been very complete and much of what was
learned in class has been addressed. Also, I think that the Master is to enjoy it, we
are tired of exams. I am very satisfied with the result and although I know that I am
using a bad method to calculate the reversal speed, I hope we correct the exercice in class.

Regarding the content of the subject, I think it is very balanced and what is expected is
obtained from it.
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1 Introduction

A flat plate on a wind tunnel clamped on one side and free on the other will be considered,
simulating a wing during flight conditions. The plate has a rigidly attached control
surface, the position and size of which are determined by the parameters n and [, as
depicted in Figure 1. This control surface can be deflected an angle 6 (6 > 0 downwards)
in order to increase the total lift on the plate. The plate has an aspect ratio AR = 6
and the chord size is ¢ = 400mm. From a structural test, it has been determined that
the plate’s effective stiffness to a torsional load is GJ = 38kNm? and its elastic axis is

located at 0.35c from the leading edge.

Figure 1: Description of the problem.

The objective is to determine a position and size for the control surface and, to do so, we
require information regarding the control surface reversal condition for different combi-
nations of # and 7. For this study, lumped panel elements will be used to discretize the
plate, assuming their section satisfies the requirements for thin airfoil theory. All angles

will be assumed small.

It is understood that this report complements the lectures. This means that the report
will contain the explanation of why procedures already done in the lectures are being
used but they will not be explained. Some definitions used in the report are referenced

to the page of the lecture where they belong but will not be explicitly defined.
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2 Divergence speed Up of the plate

The plate will be discretized in N equal sized panels as described in Session 3 (slides
from 3 to 7) and Problem 3, see Figure 2. As for constant properties each panel will
have equal effective stiffness and geometry, ¢ = 0.4m width = b/Nm. The non constant
property will be that those panels in a position where y > nb will be considered as an
airfoil with a control surface deflected in an angle 6. ay = 0 will be considered for the

whole problem.

Figure 2: Discretization model.

The divergence speed can be obtained from the homogeneous form of the equilibrium
of moments equation for each panel of the wing as seen in Problem 3. The divergence
speed will be the one corresponding to the dynamic pressure of the first eigenvalue. The
equilibrium of moments equation is solved as a system with the structural stiffness term
(Ks) and the aerodynamic stiffness term (K,) multiplying the matrix of # and the input
aerodynamic load (@) as RHS. The existance of a control surface in some of the panels
affects only the RHS because the lift and momentum generated by its deflecion do not
depend on 6. For this reason the procedure to find the eigenvalues will be the one de-

scribed in Problem 3.

As the first eigenvalue is the non-dimensional form of the divergence dynamic pressure
(Gp) it is neccessary to multiply it by gp, , the analitical solution for the divergence
condition mentioned in slide 1 of Problem 3, to obtain ¢p because it is the one used to

nondimensionalize. It is assumed that p = 1.225kg/m3. Cla = 2w, as seen in Problem 1.

2-4p - 4pa
up = ,/% = 514.159m/s (1)
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3 First 5 modes of the elastic twist and their diver-

gence speeds

In Section 2 we have calculated the smallest divergence speed choosing the first eigen-
value. The next 4 eigenvalues have already been calculated in the process, with their

corresponding eigenvectors. The process to calculate the divergence speed of these modes

is the same (Equation 1).

0.04

0.03

0.02

0.01

Eigenvector
=

0.1

-0.02

-0.03

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
yib
Figure 3: First 5 modes of the elastic twist.
The divergence speeds for these modes are in Table 1.
Mode Mode 1 | Mode 2 | Mode 3 | Mode 4 | Mode 5
Divergence speed [m/s] | 514.16 | 1542.47 | 2570.79 | 3599.11 | 4627.43

Table 1: Divergence speeds.
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4 Plot of Up/Up for different values of n and

In order to find the speed for control reversal conditions it is necessary to solve the system
imposing control reversal condition. This means that the g, of the equation will be qr
and one of the unknowns of the problem. Having N 6s as unknowns of the problem and
N equations we need to add another equation to the system. According to the slides
of Session 2 (pages 4-7), control reversal condition for an airfoil can be written in the

following way.
a_
ds

If we imagine that the plate presented in the problem represents an airplane wing with

0 (2)

an aileron, and imagining there would be an equal plate on the other side with an aileron
working in the opposite direction, control reversal condition for the airplane would occur
when the total lift of the plate becomes smaller with a positive deflection of §. For this
reason, it is logical to think that the control reversal condition asked for the whole plate
is the one that occurs when the derivative of the total lift of the plate with respect to ¢

meets the same condition as the control reversal condition for an airfoil.
dL
ds
Adding this condition, the number of unknowns equals the number of equations. The

0 (3)

total lift of the plate can be calculated as the sum of the lift generated by every panel,
and, as the derivative of the sum of two functions is equal to the sum of their derivatives,

Equation 3 can be written as follows.

() _
1z N A n
s s

n=1
To calculate the aerodynamic coefficients of every panel the results of Problem 1 will be
used. The following equations represent the contribution to the lift of a panel without

aileron (Equation 5) and a panel with aileron (Equation 6).

n cb "
l;ltzt = QRNCl,aQ( ) (5)
(n) cb (n)
aileron — QRNCLOZQ + Cl,fs (6)

The derivatives of these equations need to be used for Equation 4.
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di'y), b do™

a5 Ny @)
dlflz)eron C_bc _de(n) + Ch s (8)
—d(5 = CIRN Lo a5 1,6

Figure 4: Simplified system of equations for a lumped panel elements problem (constant
properties), useful to visualize the problem.

To solve the problem it is neccessary to obtain the derivative of 6 with respect to ¢ from
the system of equations. With this objective the system of the equilibrium of moments
mentioned in Section 2 is derived with respect to 6. The structural stiffness term (K) and
the aerodynamic stiffness term (K,) do not depend on d, so they stay equal. The matrix
of 6 will turn into a matrix of # derived with respect to § and the input aerodynamic load

(Q) will remain as follows.

RHS1a1 = 0 (9)

RHSaileron = Mac,zS + L((S)eg (10)

Equation 9 refers to the RHS of the equations of the system corresponding to panels
without aileron, while Equation 10 is the RHS of the equations for the panels with
aileron. If the RHS is 0 for the panels without aileron, df/dé = 0. So panels without

aileron will not contribute to Equation 3.
dl(”)

flat

JLat 11

75 (11)
In Equation 10, L(J) is the contribution to the lift that is multiplied by delta and es is the
distance between the aerodinamic center of the aileron and the shear center of the plate.

Substituting the values and nondimensionalizing, the RHS of the momentum equation
would be the following.
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dreés qre
Ci50 + ——Cranes0 12
C'l,cy6 bo Cl,ae o ( )

Where ¢g is qr/qp. And deriving with respect to delta we obtain the following.

RHS =

@ _ qrés
do Cl’ae

C_?RC
Crs + =——Crae 13
o+ 7, o Cmacsd (13)

The procedure to find the ug now is to isolate the variable matrix of df™ /d§ of the
system and introduce it into Equation 4 to iterate around different values of gg until
control reversal condition is met. This process is repeated for a series of 5 and 7 to

obtain the following graph.

beta=0.5
beta=0.6 / 7

09r

D_ 3 i i i i i i i i i
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 5: Ug/Up vs. n for 5 ={0.5,0.6,0.7,0.8,0.9}
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5 Discussion of the sets of values of 5 and 7

As it can be seen in Figure 5 the shape of an aileron can significally affect the point
where control reversal starts to happen. The plot can be read choosing a  curve and, if
the U/Up is situated under the curve, control reversal is not happening. If the speed is

higher, the lift decreases when deflecting the aileron and control is reverted.

It can be seen that the higher the 3, the smaller the Ur needed for control reversal to
happen. A high § means a thin aileron and a bigger distance between the application
point of L(d) and the shear center line. So, according to Figure 5, thin ailerons reach

control reversal earlier.

As for the dependence on 7, the bigger it is the smaller is the aileron. If an aileron is very
small the Ugr goes to infinite. The bigger the aileron is, the bigger its lift, and the momen-
tum decreasing the aerodynamic moment of the wing, making control reversal happen
erlier (Ug decreases). When the aileron is so big that gets very close to the embedding,
the stiffness of the wing does not allow the area near it to bend so much, so the aileron

starts contributing to the lift with less reduction of 6.

In order to avoid control reversal conditions, the best option would be having no aileron
or a very small one. In this case Ui could even be over Up, making control reversal not
possible. Of course, it would make no sense because the objective of having an aileron
is to have control over the lift generated. The most feasible options would be when the
control reversal speed is the highest but with a reasonable size for the aileron. According
to Figure 5, the most suitable values of S would be between 0.5 and 0.8, and of 1 between
0.6 and 0.85.

Another solution that can be considered to avoid control reversal conditions in flying
conditions where the speed is near Uy is to avoid the use of control surfaces near the edge
of the wing and use other control surfaces located near the embedding, so the stiffnes of
the wing prevents the decrease of . Increasing the stiffness of the wing can help avoid

control reversal too.

Ugr/Up is greater than 0.5 for all the 5 represented when 7 > 0.85. It can be seen in
Figure 5 where the curves from the different g cross Ug/Up > 0.5.
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1 Problem definition

Consider a flat plate on a wind tunnel clamped on one side and free on the other, simulating a wing
during flight conditions. The plate has a rigidly attached control surface, the position and size of which
are determined by the parameters n and (5, as depiced in Fig. 2. This control surface can be deflected
an angle ¢ (being § > 0 downwards) in order to increase the total lift on the plate. The plate has an
aspect ratio AR = 6, and the chord size is ¢ = 400mm. From a structural test, it has been determined
that the plate’s effective stiffness to a torsional load is GJ = 38 kN - m? and its elastic axis is located
at 0.35¢ from the leading edge.

Figure 1: Problem definition. Source: [3]

1.1 Hypotheses

Before writing the equations and drawings applicable to this problem, it is necessary to define the
hypotheses that will be assumed during the resolution of this exercise:

Geometrical

— Flat plates

— Small angles o << 1

— No geometrical torsion by design (ap=o)
— a=0+oag¢"

— § = ct. across all control surface span

Aerodynamic

— Potential incompressible flow (no viscous effects)
— TAT (Thin Airfoil Theory) applicable
— Lift at each section L(i) independent of surrounding panels

— Discretization of wing into N lumped elements

Structural

— Control surface rigidly attached to the wing

— Torsional stiffness GJ and elastic axis position e are constant across all span
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2 Analytical development

2.1 Aerodynamic Coefficients

Before solving the divergence or control reversal problem, it is necessary to define the aerodynamic
modellization of the wing. Because we’ve assumed that lift at each section is completely independent
of surrounding areas (which is not true for Prandtl’s lifting line theory!), we can compute aerodynamic
coefficients for a generic section with control surface:

Figure 2: Aerodynamic forces in an generic airfoil with control surface. Source: [1]

The procedure presented in Problem 1-Divergence of an airfoil [1] is here used to retrieve the aerody-
namic coefficients of an airfoil with control surface:

1

L= 5potizec (Clia 0+ Cl s 0) (2.1)
Clo=2m (2.2)
326+1)-(1-5)
Ci5=2m- 2.3
SR ER TR 22
The aerodynamic center is located at:
c
TAC = o (2.4)

And the moment about the aerodynamic center only depends on ¢, due to the fact airfoil is a simple
flat plate with control surface:

5 1+ 38— 232
2 3+48-(1-B)

C'mac7 6 — (25)
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2.2 Lumped Elements Discretization

The presented wing in Fig. 2 is divided into a total of N lumped panels. Because of the presence of
control surface, which can start at an arbitrary span on the wing, panels have been discretized into
2 zones, each of them with uniform spacing. First zone with N1 panels is the one without control
surface; while the second zone with control surface is divided into N2 panels.

In case a uniform spacing was used for all wing span, panels might not fit with the edges of control

surface; so it has been decided to split discretization into 2 zones. In any case, total number of panels
N is preserved:

Figure 3: Wing panels discretization
The discretization of wing’s semispan into these lumped panels leads to a numerical approximation to
the physical problem, in which external forces such as lift are applied each of the finite N panels, while

consecutive panels are joint with an equivalent stiffness torsional spring.

Mind that because we’re only interested in divergence and control reversal phenomena, studied stiffness
is only torsional, so no bending/plunging movement will be studied.

Figure 4: Forces and geometry of lumped panels

41



Partial Exam - Advanced Aeroelasticity - 220351

(47327455X)

For discretization, first are created the positions y.qqe that delimit each panel. Span of each panel can
be computed with the difference of yeqge:
i) _ () (i-1)
b(l) = Yedge — Yedge <2'6)
Then, y positions are computed at the center of each panel, and also root and wingtip positions are
added.

(4) (i—1)

; Y +y

(3) _ edge edge 97
Because each panel is assumed as a rigid body connected with torsional springs, number of DOFs is
equal to the number of panels N: ) )

01
B2

=1 (2.8)

2.3 Static problem definition

Having defined the discretization to be used in this numerical problem, we can start writing their
applicable equations. We know that torsion along a beam is governed by the following relation:
T d
GJ dy
Because domain has been discretized into N lumped panels, we can use a 1st order approximation of
the derivate:

(2.9)

= y(i)CiJ:()i—l) (0" -6 (2.10)
From the previous eq. 2.10, torsional stiffness at each panel ky) can be computed as the following:
7@ = kD . (9@ — gli-1)y (2.11)
Being the torsional stiffness k‘gi): .
K = y(i)G_Jy(i_l) (2.12)

Both divergence and control reversal phenomena are obtained under the hypothesis of static equi-
librium about the elastic axis:

0
. o doG
M@ — 1), 2.1
> 7 (2.13)
M)+ L0 - e® = g (00 — 900 — kY- (9 — 60TD) = 0 (2.14)
Being:
Mg = g (010 -C8, 00 215
L0 = g - @ . pO . [Cl o0+ Clg - 0] (2.16)

Now, it is time to define and apply the corresponding BCs:
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e At i=1 the root is clamped: #(°) =0

MY + 1MW)

kD o) — k2 () — 9

— At i=N the wingtip is free, no torsion is applied: gntl) — gn)

MM 4+ L) ) k}g") (6™ —

A (/752757%)
(2.17)
g(n=1) (2.18)

By substituting expressions of moment 2.15 and lift 2.16 into static equilibrium equation 2.14, the

following expression is obtained:

_C(i)

mac, 6

goo- ()25

50 40 gug-c®-50. [0 904 00).50] k. () —gli=D) _{i+1). () (D) = g

(2.19)
If we order by terms:
kP glimh) (k:f@ F AT — @ g @ p) Cl(i)a) L0 — T L glitD) =
. . , N L ‘ , (2.20)
[qoo ()@ ) Cfé)ac, s+ e gog - e bl Cl(,zZS 0]
In matrix form, we can arrange the following system of equations:
(1K) = a0 - [Ka] ) {6} = (@} (2.21)
The stiffness matrix K:
R S ) 0 ]
k) k() R kY
(K] = (2.22)
_kgn—l) k§n—l) _’_kt(n) _ktgn)
o o K
While the matrix K,, containing aerodynamic coefficients affected by 6:
e ey . ) 0 ]
0 e(®) . () . p(@) . Cl(,i)a 0
[K,] =
e(n=1) . o(n=1)  p(n—1) Cl(”a—l) 0
i e . ¢(n) . pn) . Cl(’"o)é_
(2.23)

And the vector of external torque, which contains parameters that do not depend on variable 6, but

on enforced ¢:

a

N N CULRCTIR RN )

((cm—l))? =D o
((C(n))2 b . o)

ac

ot e . o) . p(n) . 01(7"5)

((C(l))Q ION quq s+ e e p). Cl{lg) s

Ol 1 e L =) pln=1) Cz(,n6_1)> 6
) s

0]
= QOO‘{Qcoeffs}'{(s}

(2.24)
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2.4 Divergence speed Up of the plate

In the previous Section it was obtained the system of equations for static equilibrium 2.41. Thus, it
can be used both for divergence up and control reversal ug:

(1) = gm0 - [K]) {0} = {Q) (2:25)

Divergence condition gp occurs when aerodynamic forces are such that 6 can not find a finite equilib-
rium value. In mathematical form:
0 — 0 (2.26)

For a general N DOFs case, this situation occurs when the previous system of eqs. 2.25 can not be
solved, because determinant is zero:

det([Ks - QD[KaD =0 (2'27)
By applying algebraic manipulation to egs. 2.25:

([Ka] ™' [K] = ap[1){0} = [Ka] 7 {Q} (2.28)

We can obtain gp as an eigenvalue problem of the homogeneous system. In this new expression,
divergence occurs for those eigenvalues A\; = 0. Mind that external torque {Q} is not used for divergence
computation gp:

([T K] = ap[1] = M[1)){0} = {0} (2.29)

In the previous expression 2.29, the solution to be found gp is an unknown, together with eigenvalues

Ai. In order to reduce the number of unknowns of the system so it can be solved, a new variable X, is
defined:

X = (ap +\i) (2.30)
And the system to be solved is:
det([Ka] T[] — Ai[1]) = {0} (2.31)

Because divergence occurs at A\; = 0, ¢p is the minimum positive eigenvalue \}:

4 +X5 ap = min(\, > 0) (2.32)

From dynamic pressure ¢p, divergence Velocity up is directly calculated:

2-qp
Po

up = (2.33)

being pp = 1.225[kg/m3] air density at sea level.

Of course, because the system has N DOFs, a total of N values of up can be obtained, even they lack
physical meaning because the 1st mode is already a catastrophic failure. In any case, higher modes
are also computed and saved for later comparison.

In addition, gp for the case of rectangular wing with constant properties across the span has analytical
solution, that can be found in [2| pag.6:

2 GJ

QD|analytical T 42 ceCy (2.34)
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2.4.1 Grid Convergence Analysis

In order to assess the effect of mesh size, which is the number of panels for wing discretization, up is
computed for different N panels. Afterwards, error is assessed as the difference between up obtained
numerically, and the reference analytical solution for a rectangular wing with constant properties:

up — upl -
- analytical (2.35)

up |analytical

The obtained results are plotted in a loglog scale:

Figure 5: Grid Convergence Analysis for up

Due to the reduced computational cost of this problem, it has been decided to use N=1000 panels both
for computation of divergence velocity up and control reversal ur, with an estimated error € ~ le — 7.

2.4.2 Divergence results

In the following Table 1 are presented the obtained divergence velocities up for the first 5 modes:

#1 514.2
42 1542.5
43 2570.8
44 3599.1
#5 4627.4

Table 1: Divergence velocities up of the wing
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At first glance, it can be seen that the obtained divergence velocities up are in the supersonic
regime Ma > 1; so hypothesis of potential incompressible flow is not valid. In order to
obtain accurate results, aerodynamic modellization for matrix [K,] should be revised in case of super-
sonic compressible flow.

After applying the previous mathematical procedure in Matlab, the obtained divergence value for the
1st mode is:
up = 514.2 [m/s] (2.36)

It is worth noting that the obtained divergence velocity up does not depend on the position of
control surface. This has been checked with Matlab as a code verification. Also, when comparing
with analytical solution, obtained numerical results with N=1000 are equal:

2- d4D ‘analytical

p” = 514.2 [m/s] (2.37)

up ’analytical =

2.5 Plot 5 first modes of elastic twist, associated to corresponding Up

After obtaining divergence speeds up for each mode, also a plot of their eigenvectors is here displayed:

Figure 6: Normalized modes for the first 5 divergence velocities up

The modes presented in the previous Fig. 6 are normalized with their maximum value, so their bounds
are between [-1, 1]. It is clearly seen that 1st mode corresponds to the simplest one, with 6§ = 0 at
wing root and tending to  — oo at wingtip.

Higher modes have the same number of inflection points as the N® mode. For example, mode #2 tends
to divergence at y/b = 0.32 and wingtip. However, as commented previously, higher modes are not
physically feasible, because 1st mode will occur at a lower velocity up and it produces a catastrophic
failure.

46



Partial Exam - Advanced Aeroelasticity - 220351

(47327455X)

2.6 Plot Ur/Up vs. n for p ={0.5,0.6,0.7,0.8,0.9} (U is the speed at control surface
conditions

Control reversal condition is a static aeroelasticity phenomena that occurs when a deflection of control
surface § does not produce a change in total lift of the wing. In these conditions, it is said that control
surface has lost its effectiveness, because it is not useful for controlling the aircraft.

The schematic of how control reversal occurs is here presented Fig. 7:

Figure 7: Control Reversal phenomena schematic

In mathematical form, for an airfoil section, control reversal occurs when:

o{ l(i)}
150

However, because now we're treating with a complete wing, we shall evaluate total lift of the wing,
which is the sum of each panel:

=0 (2.38)

oy N {10} i a{10}
00 o 00

(2.39)
1=

We know that general expression of lift at each panel in vector form is the following. For better

readiness, the upper indices "(i)" are omitted, even these are quantities per each panel:

{1} = g {e} - {0} - [{Cha} {0} + {Ci, 5 - {61} (2.40)

In the previous eq. 2.40, lift at each panel {l} depends both on current torsion {6} and also control
surface deflection {d}.

Coming back to the general system of equations for the static problem:

(1) — g - [75a] ) {0} = (@} (2.41)

We isolate deflection at each panel 6:

{0} = (1K) = oo (Kl ) # (000 {Qeoesss} {0} ) = (1K) = oo [Kal )\ (000 - {Quorsss} - {0}) (2:42)

Where backslash operator "\" is as useful tool in Matlab to avoid computing the inverse when solving
a linear system of equations:

Axx =0, x = A\b (2.43)
Substituting {0} in lift eq. 2.40:

{1} = g {e}- 10} [{Cha} - (1K) = aoc - [l )\ (00 {Quoesss} - 18}) +{Cus- {}}]  (244)

10
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Now we have written the system of equations dependant only on deflection §; so control reversal
condition as expressed in eq. 2.39 is applied:

N N
o{l

r=3 (AY = 0= 3 an(eb 01 [100 o (1K [\ (951 Quues s} O ) G s-{OS D]

i=1
(2.45)

Where variable CS is defined as:
oS = 6{5} _ 0 for panels W?thout control surface (2.46)
06 1 for panels with control surface

In order to avoid the trivial solution ¢ = 0, we omit the common terms g - {c} - {b} from the control
reversal function, and preserve the equation inside brackets:

N
oAl
F= Z () 0= 3 100 ad (1) —an- 1))\ (9 {Quoes s} (0S)) +4Cu5- (O} (247)
1=
This hlghly nonlinear eq. 2.47 is the function that has to be solved, so the scalar control reversal ggr
is found. To do it, function fsolve has been used in Matlab, recovering qgr for different configurations
of 8 and 7. The obtained results are the following Fig. 8:

Figure 8: Control Reversal velocity ratio ur/up results

When observing ratio ur/up for different positions 5 and 1 of the control surface, the following trend-
line is deduced: for smaller size of control surface (which is associated to small chord of control
surface 8 1 or small span of control surface n 1), then control reversal velocity up is lower.

So, the smaller the control surface is, it is more prone to experience control reversal at lower velocities.
In any case, it is important to notice that obtained velocities here are in compressible range, so
potential incompressible flow hypotheses are no longer valid: analysis should be refined with more
accurate aerodynamic modellization in the transonic/supersonic regime.

11
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2.7 A discussion on the possible sets of values of § and n for which:
2.7.1 Surface control reversal can be avoided

For control reversal to be avoided, there are 2 possibilities:

e up/up > 1. If control reversal velocity is higher than divergence, then up would occur before,
and it will be the most limiting factor. Remember up results into catastrophic failure, while
control reversal upg is usually a loss of maneuverability, but does not generally end up into a
structural failure.

e up < 0. If no positive control reversal velocity is found from eq. 2.47, then this phenomena
would not occur.

For all the range analyzed in Fig. 8, control reversal occurs at lower velocities than divergence, so ugr
would be the limiting factor for high speeds.

In order to check a wider design envelope, it was decided to compute ug for more 3 positions of control
surface:

Figure 9: Control Reversal velocity ratio ur/up results. Extended analysis

In this case, it was observed that for § < 0.4, ug had no real part, but it was an imaginary number.
So, for 5 < 0.4, control reversal would not occur.

2.7.2 UR/UD > 0.5

According to Fig. 8, for all the range 5 € {0.5;0.9} and n € {0.05;0.95}, the relation ur/up > 0.5
is true. Thus, this statement is fulfilled for all the analyzed control surface positions in 8.

12
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Control surface reversal condition for a wing

Consider a flat plate on a wind tunnel clamped on one side and free on the other, simulating a
wing during flight conditions. The plate has a rigidly attached control surface, the position and
size of which are determined by the parameters 1 and £3, as depicted in Figure 1.

S N
?’;
=

[ U=

b | (1-mb :

e

Figure 1: Problem description. Geometry and parameters identification.

This control surface can be deflected an angle § (6>0 downwards) in order to increase the total
lift on the plate. The plate has an aspect ratio AR=6 and the chord size is ¢ = 400 mm. From a
structural test, it has been determined that the plate’s effective stiffness to a torsional load is
GJ =38 kN m?and its elastic axis is located at 0.35¢ from the leading edge.

a) Divergence speed

Continuous beam and uncoupled aerodynamics analytical solution (extracted from page 41 of
the lecture 3) which is valid even for deflections of the control surface as it does not affect the
static stability of the system:

w26 -]

=———"——=161920P 1
4b% -c-e-cly, ¢ @)

dp

Which at sea level will correspond to (p = 1.225 kg/m3) a flight velocity of:
Up =514.16 m/s

Discretised Systems of equation
Z M = (Ks - qu,a)g + qKm,66 + Cpac =0 (2)
SC

[= q(Kpo(a —ag) + K140 + K 56) (3)

The divergence condition is when there is not a solution on the moment’s equation. This is
achieved by solving the following eigen-values problem (equation extracted form lecture 3 page
34):

(Ks — qKme )0 =0 (4)

Which can be transformed to (equation extracted form lecture 3 page 34):

(Kmt Ks—ql)0 =0 (5)
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Concretely, the lowest positive eigenvalue is the divergence condition (qp, = min(q > 0)),
obtaining the following convergence plot for the lumped system:

Figure 2: Convergence plot. Lumped panel method.

From this plot it is possible to extract that for more than 8 panels the solution has a relative
error to the analytical solution (eq. 1), of less than 1%. However, 100 panel will be used in order
to precisely allocate the wing distribution of the control surface 7.

b) First 5 eigen-modes of divergence

From the previous development (the eigen-values problem) it is possible to obtain the 5 first
eigenmodes of the system:

0.05

0.04 1

0.03 1

0.02 [f
= —1:UD=514,16mI5
g 0.01
k3] 2:U,=1542.5mis
g
< 0 3: UD =2570.8 m/s
.\‘é{, 4: UD =3599.1 m/s
w -0.01[ 5:U,=4627.4mis

-0.02 1

-0.03 1

-0.04 -

-0.05 ' : : ;

0 0.2 0.4 0.6 0.8 1

y/b
Figure 3: Five first eigen-modes. Lumped panel method.
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c) Control surface reversal condition

The control surface reversal condition occurs when a deflection of a determined control surface
do not perform the desired control action, instead, it performs the opposite one. At the limit,
this condition can be determined when the sensitivity of a magnitude to a deflection of a control
surface is null. From this problem two different desired control actions may be studied, on one

hand, the sensitivity of the total wing lift vs a deflection of the control surface (g—g = 0). On the

- . oM
other hand, the sensitivity of the roll moment generation by the control surface (a_o‘x = 0).

To solve this equation, the lift distribution (eq. 3) must be solved as a function of the control
surface deflection (§) and the dynamic velocity (g):

[ = q(Kyo(a — @) + K100(5,q) + K 66) (6)
Concretely:

-1
0 =- (Ks - qu,a) (qKms6 + Cmac) (7)
Where Gy, o = 0 and a = 0 because it is a symmetric airfoil:

- -1
l=gq [Kl,aa + (Kl,zS — Ko (Ks - qu,a) (qu,zS)) 5] (8)
Then, if both conditions are applied what is obtained is:

Total lift condition:

oL -
5= (Kis = Kia (Ks = GrKina) " (rKms)) =0 o
L

And the rolling moment condition:

oM -
6_6x =q E Vi (Kl,a — Ko (Ks = qrKma) QRK’”"?)). =0 (10)
L

These equations might be solve using numerical schemes, concretely a simple Bolzano method
will be used, using as intervals limits gz € [0, qp). If there is a change of sign between this
interval, there exist a solution with cross the x axis:

Figure 4: Bolzano solution verification. Lumped panel method.
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Finally, the solution for different wingspan and chord span position of the control surface can
be plotted:

Figure 5: Control reversal condition. Lumped Panel method.

d) Results discussion
d.1 Surface control reversal conditions can be avoided.

Chord proportion of the control surface 3:

From the theory lecture 2, page 25 the following expression of flexible airfoil can be extracted:

C
qoo mac,6 c
1 A0 __ac— —
ﬁ = cC " o ( Cl,5 )(e) =0- q_R — _E Cl,8 (11)
95 d=chie \ 1 -9 dp ¢Cpy5
dp

Where, from problem 1 page 4:

1+8-2p% B ar _e4

Cig=6m———+; C =——Cig> —=—— 12
TR Ap =gy’ et T T4 T g T e 12
To obtain feasible solutions the following conditions must be satisfied:
0<I’ o4 (13)
dp
From here it is possible to obtain two inequations:
LN [3>4e
dp cp c (14)
For é=0.1 (as in this problem):
p1(&¢=0.1)> 04 (15)

From this equation it can be seen that for 5 lower than 0.4 it will not exist a control reversal
condition within the range of divergence conditions.
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The second condition is:

Mid-term Exam - Assignment
Control surface reversal condition

qr e4

—>0->-=>0
—)Cﬁ

dp
From the previous results, it is possible to obtain that does not exist a feasible solution that

avoids the divergence of the 1D problem. Then, it would occur for the range of £:

04<p<1

(16)

(13)

In addition, control reversal condition can be improved by increasing the chord proportion of
the control surface increasing the efficiency of the control surface respect the torsional moment

generated.

This effect can be clearly seen at figure 5 obtaining in both cases better control reversal speeds
when increasing the control surface chord. Concretely, if § < 0.5 the following results are

obtained:

22 1
o= a il T ee—
—— = flagg) | =
= 0 — iy = flagiay) E
5 \1. I}-.{)I ank |.|_ R'p!
+  Ugldg iLim Thax -{r_qa-'qn]
4+ Ugl, (Rl + Uy, (L
6‘ 6‘ 08 + Uy, (Ral | \
c c
i) L}
= =]
E =
fut @ 04
= c
2 o
o o
- £
o T .2
a 3 0.2
L]
02 ' i i . . !
1 0 01 02 03 04 05 08 07 0.9 1
UR."UD
2
18 o=l |
gy = A8RM) |
16} + Ugiug iLin
4 UgUg (Rl
=14 L - == -1
=
2
o 1.2
=
=
T
=
o
gos
o
O 06
D4 |
0.2
0 ' L L ' ' ' '
o 0.1 0.2 0.3 0.4 0.5 0.6 07 (1 X:) 0.8 1

uu >

Figure 6: Control reversal condition (n = 0):a) 8 = 0.35.b) 8 =0.45.¢c) 5 = 0.4.

The results for the 2D wing problem are consistent with the flexible 1d airfoil. It can be seen that
for f < 0.4 the control reversal condition will not occur. This effect is maintained,
independently of whether the whole wing is considered control surface or just a part of it, and

for both control reversal conditions.
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Wingspan proportion of the control surface n:

The control force generated by the control surface is a linear function n, whereas the generated
torsion of the wing by a deflection is parabolic function:

Torsion moment:

Figure 7: Torsion moment effect by control surface deflection.

And the deflection is:

Figure 8: Torsional deflection by control surface deflection.

Then the obtained sensitivity distribution along the wingspan are:

Figure 9: Total lift distribution comparison.

Figure 10: Total Roll Moment distribution comparison.

As it can be seen the balance between the torsion effect due to the control surface deflection
and the extra lift generated by the control surface deflection is the main cause of the sensitivity
of the n parameter. Because of this effect, the linear part, where no control action is applied
generates parasite reduction of the lift that is optimized when increasing the wing part that is
used as a control surface. Whereas, the roll moment is optimized by positioning the control
surface near the wing tip, as the distance effect is more important than the total lift generation.

6
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Figure 11: Contribution of each section to the global sensitivity.

d.2 Ug/Up >0.5.

Due to the geometric configuration of the shear center, the control reversal velocities are always
higher than the half of the divergence speed. This is caused by using a distributed wing loading
of both, extra lift generation and extra torsion moment generation. Making the 2D system more
efficient than the 1D system studied at the lecture 2. As it is easier to have a total positive
contribution of the control surface even if some parts of the wing are not contributing to extra
lift generation Figure 11.
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e) Opinion about the subject

| think that the way this subject is structured is quite balance between theory and
problems, as every lecture there is a proposed problem that might be solved using the
taught information.

The scope of the theory is quite similar to the one done at the subject of vehicle done
by Oriol Casamor. But, at that subject the same information was given very fast and
without understanding the basis of the coupling between structure and aerodynamics.
| think that this subject might need a bit more projects evaluation than exam, as the
problems are complex enough to be made using programming. And the written examen
should be more about the physics of the problems rather than solving extremely
simplified cases.
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Project

Project

Setup of a virtual laboratory for
studying aeroelastic problems

Goal: Implement a set of MATLAB functions to perform different kinds of aeroelastic analysis (e.g.
assess divergence conditions, flutter study, unsteady aerodynamics, etc.).

Code requirements:

* Structures:

- Use of 3D FEM code to obtain effective properties.

- MATLAB implementation of a beam’s FEM algorithm.
* Aerodynamics:

- Forsteady aerodynamics: MATLAB implementation of lifting-line solution by horseshoe
elements.

- Forunsteady aerodynamics: MATLAB implementation of Theodorsen’s model.

» Coupling:

- MATLAB implementation of transfer matrices: structures output (displacements vector) to
aerodynamics input (angle of attack) and aerodynamics output (lift distribution) to
structures input (force vector).

* Solvers:
- Divergence speed + modes.
- Flutter speed.

AO,



N ©

Results:

* For a clamped-free straight panel with a constant NACA0012 airfoil section, obtain:
- Divergence speed for different wing aspect ratios.
- First modes associated to divergence conditions for different aspect ratios.
- Stability plots for flutter.

Evaluation:

75% Report + Code
50% - Minimum requirements
10% - Report quality
15% - Bonus (up to 30%)

25% Presentation

Bonus:

15% of the project qualification will come from devoting some extra effort to go beyond the
minimum requirements. The nature and level of this extra effort can be awarded with an additional
15% (accounting ~10% of the global course grade!). Some ideas:

- Performing an analysis on a swept wing and/or with variable chord length.

Implementing more complex structural/aerodynamic models.

Implementing wake rollup for unsteady aerodynamic computation.

AO®

I © 2

3D FEM Analysis — Experimental structural test

Material properties

. Young's . .
\/ Material Density Modulus Poisson’s

(kg m3) (GPa) ratio

Z N (D skin (1) Skin 2000 9 0.27
[, Sk N e \/

Y o ] 9 L (2) Spars 1800 150 0.30
| 3””9 bo:l( | I (3)Stringers 2300 70 035
: —_—— . K:
@ front spar () rear spar

NACA0012 A® 60
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3D FEM Analysis — Experimental structural test

- SN M

L__

—t

X Points where we apply
loads

+ Points where we measure
displacement

The goal is to obtain: (,__l_nELiti__\\ (/__O_u_teu_ts__\\

- Shear center position: x.(y) : Loads : 3D FEM | Displ. measure |

- Torsional stiffness: GJ(y) | Displ. measure : » solver » fe:adings :

- Bending stiffness: EI(y) | locations ). { )
N N

I © 2

3D FEM Analysis — Experimental structural test

Assumptions:
(a) Small displacements and deformations (this implies also small angles and linear elasticity).

(b) Effective response can be described by elemental beam theory:
_[GF o { do/dy }
Lo Enlld*h/dy®

]
This is our hypothesis. We want to verify whether this hypothesis is satisfied and, if so, find [E].

In the experiment, we are applying forces and measuring displacements. Since we cannot
guarantee, a priori, that bending and torsion are structurally uncoupled (i.e. k = 0), itis better to
work with the following constitutive relation instead:

{_5'}: S11 312]{T}
h" S21 S22l M
el m2zg

-1
[E] To apply a pure shear
From applying a pure torsional load (M = 0): load, we need to find
S, =6'JT, S,y =h"/T the shear center first!

From applying a pure shear load (T = 0,M" = —Q):
512:9_’/M:_9_”/Q, 522:’_1"/1\4:—’_1’"/(? A‘61
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3D FEM Analysis — Experimental structural test

Considerations:

The effect of applying a shear load in a particular point can be replaced by a applying the same
load at a different point and adding a compensating torque:

(1) = Qx, / non-existing node
O/\{ | I
.-J_ a4 ok
il M(1) M(z) S F=g Xpq — Xp
Xp — Xc
,, 1S
oxj
| .
F

M = Qxg + F(xp — x¢)

X

A®

N ©

3D FEM Analysis — Experimental structural test

Considerations:

We are applying point forces in a 3D FEM model. This means that deformations near the load
application points may distort the average twist 8 and deflection h on neighbouring sections.
The same may be true for sections around the root, where the boundary conditions are applied.
This must be taken into account when choosing the measuring points to obtain 8 and h.

Results of applying a pure torque

Fixed displacements at the root

/

Loads applied on the tip
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2D FEM Analysis — Section properties
1 =
ol ~

Determination of section properties:

Nodal coordinates [x] = lx(i) y® z(i)] = [X(i)]

Nodal connectivities [T, ] =

@O @Y | ()] (i)EfJ‘

Material properties [m] = [p(rrz)‘

4->(12) 3->(18)

- Material connectivities [T,,] = [(m)[e]]

1->(30) 2->(32)

I ©

2D FEM Analysis — Section properties
1 =
| -

Determination of section properties:

For each element [e]:
1. Obtain the coordinates and material:
x]["’] = [x]([T"](e'j)), j=1..4
plel = [m]((Tm1©)
2. Determine the centroid coordinates:

1 4
_ § [e]
X[e] - Z X]-
j=1

3. Determine the area of each element [e]:
4->(12) 3->(18) a= xg"] — XE,Q]; b= xge] — xg"’]

- c=x3 —x7 d=x—x
1
le] =2
A 2(a><b+c><d) A .

1->(30) 2->(32) 63
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2D FEM Analysis — Section properties

Determination of section properties:

Then, compute:

1. Total mass p.u. length:

- z plel gle]
e
2. Center of mass:

1
X, = szle] plel gle]
e
3. Inertia about the shear center p.u. length:

I, = E(XIe] —x,.) plelatel

e

1->(30) 2->(32)

I ©

1D Beam analysis

Z | |
Haeslpelpep e - g leoglenely

L B U U VR
~
(1) (2) (3) me. () ) (+1)
Nodal coordinates:  [y]® = y® Element equilibrium equation
Nodal connectivities: [T,]¢Y =i; [T,]¢? =i+1 [ME) (a1} + [K]{ulil} = {£[1)
Element [i] (il
(6@ L
Fl' ‘FZ o F
. @ . Ml
m—J 7Y . lin = )M
Tl O Ml. ‘MZ O TZ {u } ) 9(l+1) & {f } 1 T[l] }
. R+ 0
1 [i] 2 L i+1) leil
() (i+1) \M;")
UG A®
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1D Beam analysis — Element matrices

Stiffness matrix:

) . 0 0 0 0 o0 0
100 =100 0 12 61 o —-12 6l
o o0 0o 0o _ . 2 . 2
g _Glo o0 o o o EI |0 6llil 4(1)” o —elld 41l
KU=m1 00 1 o off@@lo 0 o o o 0
0 00 0 0 0 0 —12 -6l 0 12 —elld
Lo 00 0 0 o 0 6l 4(11)* o —ellil 4(1ld)’]
Mass matrix (lumped):
I, md 0 0 0 0
i md m 0 O 0 O
n _lo o 0o 0o 0 o0
0] - D od =
M==10 o o L. md of @7 ¥ %em
0 0 0 md m O
Lo 0 0 0 0 o

A®

project Y

1D Beam analysis — Matrices assembly

Given the element stiffness and mass matrices, [K[i]] and [M[i]], respectively, one can obtain the
global stiffness and mass matrix with the following assembly algorithm:

1) Initialize global matrices. Remember that, in this case, we have 3 degrees of freedom (DoFs)
pernode (6, h,y = h'). Therefore, the total number of DoFs, N = 3(n + 1):

[K] = [0]nxw, [M] = [0]yxn
2) Foreachelementi ={1..n}:
For each element node a = {1, 2}
For each degree of freedom j = {1...3}

p=3%x(a—1)+j

I=3x([T,]0® —1)+;

For each element node b = {1, 2}

For each degree of freedom k = {1...3}

qg=3xMb-1)+k
J=3x([T,]¢P —1) +k

@) 1@
[K]®D = [K]ED + [K[l]] ,[M]@D = [M]@D + [M[l]]
Next k
Next b
Next j
Next a
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1D Beam analysis — Element force vector
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Al
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Force vector: This information comes
from the aerodynamic
0 17 analysis!
" 1 0
al e
i 9] 16 ol (21
2 0 1f|mld
1 0
—1lil/6 0]
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project Y.

Aerodynamics - Lifting-line surface analysis

y Elastic axis Collocation points Aerodynamic

/ center line
r——

X
——.—-h—‘———+—-h—’——h— vee —_—.-—-h—‘———+—-
23 £ 3 X % b3 ? 3 E 3
(1] (2] [3] [n —1] [n]
Horseshoe element [i]: Discretization:
y — . — + Surface area of the element: S
c/4 5 rli 3 .
X > Z « Normal vector of the element: n!’]
c/2 X + Coordinates of collocation point: x!?/
| X e a
c/4 [i] ~ 20c o Kutta condition for each element:
_ [i] Y rlil % L
A re . . . .
| _ (v&’z] + o)+ v[3’4]) o+ Uoo .nll =0
: : < x=x!!
rli] j=1
1 |_4_ 4 —Y
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Aerodynamics — Lifting-line surface analysis

Induced velocity at point x due to a vortex segment from x; to x, with vorticity rhil.

vil(x) = 5 xn (l“] 5 19 'r">;

ik
J r] Tk

=w—x.. 1 =% _x.
r; =X &,l =Xy — X;

System of equations:
[A{T} = —Us{a}

Ay A - A (Tl alll
Ay Ay - Agn| )Tl -y al?]
Apn1 Az - Apn F['n] af"]
where [A] is the aerodynamic influence coefficients matrix:
iy = (vG) + B () 4 o)) |l
Total lift on the element:
st 0
L = p U SUITH - > {L} = —p, UZ[S][A] o} [S] =
0 glnl

A®

N © 2

Systems coupling — Force vector assembly

1) Express the lift vector {L} in terms of the structural unknown vector {u}. In this case, this
means finding an interpolation matrix between {a} and {u}. For our aerodynamic model:

(9@
h®
. . 1 ® @
[i1 — plil = — " = r
at =6 —2[1 0 0 1 0 0]¥ pl+1) e = [ I]{u(i+1)}
h(i+1)

(u®
u®
u®

ey

I
@={c"t=10 !

Yt
(=R
(=R =)

| L0 ol R gy
am! 0 0 0 - I 1 u®

{L} = —po, U [SI[A] ™ [1]{u}

A®
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Systems coupling — Force vector assembly

2) Express each element’s £l and /..

we can express:

3)

()=

FD
F®
F®

F(.n)

o ——————————

plil
_[i]

.

[

in terms of LI). Since L[l is the total lift on each element,

l @ [1] LM, e =X — Xac

Obtain the element force assembly matrix:

0 1 e
10 ! [
. - . i
1 glile o [1] [l]_ 1176 [ {Fo) }:1 1|10
0 1@ e FD) 2| qll
1 0 1 2
1l o] —1li/6]
. .
Moo 0
2 Q) 0 |/
1 [2] [2] 1 -
5 ? 2 ? L= - {F(u)}=—2pwUZo[Q][S][A] [X]{u}
' [n] - v ’
@ Kl
- 0 0 gn]_ qoo a

A®

project Y

Coupled system flow diagram
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| Material data: : | |
: . ptm | 2D FEM Lse, M, Xem Element |
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: . Em : Section S mass matrix I[M[']]
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| | X : : Matrices
| (7T .
: i Geometrical data: | : : : . assembly
|| © FEMmesh ¥ 3D FEM GJ, ET | Element | (K] M), [K]
lve ¢ ' Analysis | stiffness matrix I
:' * AR bl | |
N M. T o SR > [ Coupled system: ]
(o ) M|{ii} + [K[{u} = {F(u
L M]{i} + [K]{u) = (F(w))
T{F(u)}
Beam elements [y], [Ts] Force vector
discretization | assembly
XSC
[x1], [s]. [n"] i [S][A]*
x), ,|n
Horseshoe elements Aerodynamic

discretization

influence coefficients
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. 1 A
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Setup of a virtual laboratory for studying aeroelastic
problems

C.

Al ¢ NI

Polytechnic University of Catalonia, Master’s program in Aeronautical Engineering

Abstract—This project is designed for the study of aeroelastic
problem through setup of a virtual laboratory. Basically, the
goal is to implement a set of MATLAB functions to perform
different kinds of aeroelastic analysis. These analysis could be
the observation of divergence conditions, flutter study, unsteady
aerodynamics, etc.

Key words—Aeroelasticity, wing, flutter, FEM, aerodynamics,
horsehoe, Theodorsen.

1. INTRODUCTION

The setup of a virtual laboratory is carried out through this

project to study the aeroelastic problems. In order to do so,
it is required to use a set of MATLAB functions to conduct
the analysis for different aeroelastic cases. These cases include
divergence conditions, study of flutter, unsteady aerodynamics,
etc.
The structural code requirement uses 3D FEM code to obtain
effective properties where the MATLAB implementation is
based on beam’s FEM algorithm. The part of the steady
aerodynamics condition and unsteady aerodynamics require
the MATLAB code implementation of lifting-line solution by
horseshoe element and Theodorsen’s model respectively. The
third part of this project is related to coupling that is carried
out through transfer matrices. These matrices transfer the
structural output (displacement vector) to aerodynamic input
(angle of attack) and aerodynamic output (lift distribution) to
structural input (force vector). Once computed the previous
requirements successfully, a solver computes the divergence
speed, modes and flutter speed.

2. PROBLEM DEFINITION

The definition of the problem relies on 3D FEM analysis
of a wing that goes through experimental structural tests. The
airfoil chosen for the computation of this wing is NACA0012.
The material properties are shown on the Table 1.

Initially the chord of NACAOO12 is considered 1 and the
span is b=5c. This value of chord changes along the study of
this problem in order to observe the influence of aspect ratio.

MATERIAL PROPERTIES

Material | p [kg - m3] \ E [GPa] \ v
Skin 2000 9 0.27
Spars 1800 1500 0.30

Stringers 2300 70 0.35

TABLE 1: Wing’s Material properties
3. METHODOLOGY

A. Structural analysis

The goal of this first structural analysis is to obtain the shear
centre position X, the torsional stiffness GJ and the bending
stiffness E'1 of a NACAO0012 airfoil. The model of the airfoil
is formed by hexahedral elements that gives more accuracy
than using tetrahedras.

The starting point of the finite element code is to use a code
already build that simulates what would be an experimental
analysis of a wing, it has as input the loads where the
forces will be applied and the magnitude. It also reads the
displacement measure locations, the places of interest to locate
the sensors in order to measure the displacement.

This FEM Analysis assumes small displacements and defor-
mations, that implies also small angles and linear elasticity.
The second hypothesis is that the effective response can be
described by the elemental beam theory:

T\ [GJ 0 |
M (" |o EI M
(S —

I

Here, torsion is related to the twist change although the span
of the wing and the bending moment is related to the second
derivative of the wing deflection. Both parameters, as the
section profile is the same, will be assumed constant along
the wing span and assumed uncoupled. This hypothesis will
be verified in Section 4.

Since in this problem loads are being imposed and the resulting
displacements are measured, the constitutive relation can be

do/dy
&2h/dy?

(E]
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written as:
o' | S Sie T
e d-la s i) e
[E]-?

This constitutive relation allows the user to apply pure tor-
sional load (M = 0) and obtain the uncoupled effect on
the twist angle and the wing deflection. It also allows the
application of a pure bending load (T = 0) to obtain the rest
of the coefficients.

Applying pure torsional load (M = 0) it is easy to compute:

S11=0')T, So=h")T 3)

Instead of a bending load, a pure shear load M = 0, M’ =
-Q) is be applied:

S1o =0 /M = ~8"/Q, S =H'/M =-1"/Q (4

It is important to recall that the shear and bending are related
so that the derivative of the bending is the shear.
To do so, the torsional load will be applied imposing two
forces with the same magnitude in opposite directions sepa-
rated by a certain distance. A pure shear load means a load
in a specific point in a beam that does not cause torsion. This
specific point is the shear centre calculated previously.
The program has a particularity that prevents the application
of loads at any point and they need to be applied at prede-
fined nodes. In order to apply forces at non existing nodes,
the methodology will be the following: apply a force in a
specific node accompanied by a torsional moment (same load
in opposite directions in separate nodes). This is useful to
compute the shear centre.
The points selected by the user to apply forces or measure
displacements cannot be chosen randomly. The element that
carries the structural resistance is spar because skin is too thin
to have a resistance. Therefore, the point where the forces
are applied are located at the spars. The measurement points
will be enough to have a accurate value on the rotation and
deflection.
Once the torsional stiffness G.J and the bending stiffness are
obtained, E'I the next step is to perform another numerical
analysis in order to define the section properties. To do so,
the wing section is discretized in 224 elements contained in
the following matrices:
o Nodal coordinates [x]: this matrix contains the x, y, z
coordinates of each node.
e Nodal connectivity [T,]: This matrix tells us which
element is connected to which node.
o Material properties [m)]: this matrix contain the density
of each material.
o Material’s connectivity [Ty,]: This matrix tells us which
element is connected to which material.
The determination of the section properties is given by the
following procedure:
1) Obtain the coordinates and the material of each element.
2) Determine the centroid coordinates of each element.
3) Determine the area of each element.

With this information, it is easy to compute:

1) The mass per unit length

m = Z plelAlel (3)
2) The centre of mass
1

- le] el glel 6
Xem WLE:X P (6)

3) The inertia about the shear centre per unit length.

2

Isc = Z (X[e] - Xsc) PMAM (7)

e

The next step is to discretize the wing into beam elements as
shown in Figure 1.

£(v)

[l

4
A alo_alo pla

= 7

V00 T 0 T W 1 WY
Tty gy

(1) @ (3) e m)  (n+1)

!

Fig. 1: 1D Beam

With this discretization, the unknowns will be located at
each node. Imposing equilibrium in each element the equilib-
rium equation can be written as:

MO () ] G ()

Where {u} contains the 3 defined degrees of freedom of the
problem (the elastic twist 6, deflection h and rotation about
the x-axis 7).

o) 7}’

B Fl

) (%) . M[i]

[ — 7 : [l — 1
{ull} =0 gl o {1} = (@

R i+1) Fz[i]

SRR MY

There will be a Torsion 7, a shear load F' and a Bending
moment M associated to each degree of freedom. To solve
the system, it is necessary to compute the stiffness matrix
and the mass matrix. The expression of the stiffness matrix
is formed by two sub-matrices, one containing the torsional
stiffness (computed previously) and the other containing the
effective bending stiffness. The mass matrix is computed using
the lumped approach with the values computed in the previous
analysis.

Given the element stiffness matrix and mass matrices [K!]
and [MU], respectively, the global stiffness and mass matrices
can be calculated using the developed MATLAB algorithm.
Finally, the force vector will be discussed in the aerodynamic
part. As shown in Figure 2, a constant lift distribution for each

beam element £[i] and a constant torsion moment distribution
rYlLll will be assumed.
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Fig. 2: Element force
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Similarly to process followed in mass, the force will be
separated into two load points, this relation is given in the
following matrix:

0 1
1 0
, @ lide o 0[]
(DR .
{f } 2 0 1 {mLﬂ} (19
1 0
~il/6 0

The half of the contribution is given to each node by mul-
tiplying the beam length and dividing by 3. This is, in fact,
the interpolation of coupling between the aerodynamic and the
structural part.

B. Aerodynamic analysis

The aerodynamic analysis requires a couple of pre-processes
in the computation. The first step is the dicretization of the
panel to develop a coherent relation with beam element from
the structural analysis. The association between the structural
and aerodynamic degrees of freedom DoF is implemented.
The unknown variables in the aerodynamic analysis are the
vortex intensities 'Y} shown of the following figure 3 as vortex
lines.

Fig. 3: Horseshoe element [i]: Vortex lines

The Horseshoe element refers to the effect of the vorticity
from node 4 to 1 is considered far from the body, which leads
this parameter to be null. The distance of the contribution
of this vorticity, from the section’s leading edge, is big
enough(~20c) to neglect its effect. Therefore, the horseshoe
element considers the other three vorticities and places the
vortex at c/4, the aerodynamic centre. The Kutta condition is
applied at the collocation point ’x’ shown on figure 3, at 3c/4
of the section.

The numerical analysis is based on the discretization of the
panel obtaining the effective area of each discretized section or
panel SlJ, a vertical normal vector for each panel nl’ and the
coordinates of the collocation point !/, The intensity of the
vortex lines come from applying the Kutta condition (11) at
each collocation point. As the U, is deviated at a certain angle
(elastic twist, 6;), the projection of the corresponding axis is
calculated and this links the structural part and aerodynamic
part.

n
> (o + o+ o))

Jj=1

+U, |-nfl=0 @an
x=xl

Induced velocity at point x due to a vortex segment from
x; to xy with vorticity 'l is calculated as follows:

i 'l rixr 1.y, 10y
do-Frsar (550 o
AT |l x rg| T Tk
r; =X — Xj; 114 =X} — X; (13)
The system of equations is:
[ART} = —Use{a} (14)

Where [A] is the aerodynamic influence coefficients matrix:

Aij = (v@ (x[i]) + o] (x[i]) + ol (x[i])> ‘r[ﬂ—l -nl!
(1)

Finally, the total lift as a function of {a} and U, on the
element is:

{L} = —p UL S][A] H{a} (16)
Where [S] is:
St 0
[S] = (17
0 St

The expression of lift can also be built as a function of g
instead of Uy, because it is the main variable that the problem
is looking for. In that case, lift would be:

{L} = =240 [S][A] {a} (18)

C. System’s coupling

The study of coupling effect in the system requires the as-
sembly of three vectors. The first vector is based of expression
the lift vector {L} in terms of the structural unknown vector
{u}. This is obtained finding the interpolation matrix between
{a} and {u}. For the expression of Lift, the positions that
contain 6 in the displacement vector, is related to a.
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Substituting the previous expression of « to the expression
of Lift obtained in equation (16), the vector of lift is computed
for coupling system:

{L} = —pocUZ [SI[A] 7' [T]{u}

The second vector has the average value of constant lift

19)

distribution ZM and the effective torsional moment contribution
about shear centre m[ﬁl in terms of L (the total lift of each

panel).
a1
il | T | e

€ = TLge —

} Ll (20)

where e is:

3y

mCLC

The element force assembly matrix is computed inserting
the expression (20) into the expression (10). This way, the
force of two nodes of each element is related. Now that, all the
equations are sorted, the coupling effect between structural and
aerodynamic part is obtained simply computing the following
general equation of Force where each couple of Q[i][i] in
column belongs to a specific element:

FO Q; 0 . 0
FO Q! Q¥ ... o L
F®) o Q¥ ... o L2
: T2 : : : :
Fn) 0 0 [1n] Ll
(n+1) n
F ) b
(22)
Therefore, final expression of Force is:
1 _
{F(u)} = *gpoono[QHSHA] I {u} (23)

Goo [Ka]

D. Flutter analysis

One of the most extensively used in aerodynamic models,
capable to explain flutter induced instabilities, was developed
by Theodorsen back in 1935. The goal of this section is
to introduce the flutter condition in this dynamic system
which means finding the appropriate set of solutions for the
elastic twist and the plunch. Typically, the solutions have a
harmonic shape. There are two unknowns for two equations
that equalized to zero the real and the imaginary part of
the determinant. The involvement of aerodynamics lead to a

non linear equation to solve a numerical approach, Newton
Raphson method.

The aerodynamic expressions for the lift and moment are
given by a Theodorsen function that accounts for attenuation
phenomena in the lift and moment due to the wake vorticity.
It is a non-dimensional parameter that is defined by a H
function and a reduced frequency which is a non dimensional
frequency:

(2)
C(k) = o) i, (bﬁ)@) , k=
Hy™ (k) + il (k)
Instead of working with previous expression, the following
one has already been developed:

wb
Use

(24)

0.165 0.335
Ck)=1- - == - (25)
1— 270'0,;15 1— zo—lf’
That can be expressed as: C(k) = F (k) + iG (k)
0.5k% 4+ 0.0765x2 + 1.8632 x 1074
F(k)=—; 3 — (26)
k%4 0.0921x2 + 1.8632 x 10
—0.1080k3 — 8.8374 x 10~k
G(k) = 27
W)= oo+ 1sezx 10+ 2
Introducing this expression in our system of equations one can
get:
mk 2rr2 ([A 1A a®
m } — 1pab?UZ ({AR(K)_ +i [A,(R)D I 1}{ )
(28)
And the element force vector becomes:
Ol ] (4]
F L — 1 Msc
-] @

It is assumed that the degree of freedom referring to the
vertical displacement, h, iAs non-dimensionalized by the half-
chord,b , when writing ulil. Additionally, to make the units
consistent, all equations referring to forces are multiplied by
b. In practice, this means that [l = [l /b in the definition of Q
and that rows and columns of both [K] and [M] corresponding
to the second degree of freedom of each node, must be
multiplied by b.

Doing algebra manipulations and applying the boundary con-
ditions the system yields:

11—~ 1 [~ 71-17-
([Ree) ™ [Fie] + o5 [Rua] ™ [Fuao] -aiuia =

puk?

[Bur(v)]

And the flutter condition is given by:

det ({13 (HF)} - AF[l}) ~0 (30)

E. Code development

The code developed to perform this structural analysis has
the following structure:
1) Inputs and test set up:
o Material data: p™, E™, v™.
o Geometrical data: FEM mesh, c, AR;

{0}
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2) 3D FEM Analysis.
a) Find the shear centre.
b) Apply pure torsional load.
c) apply pure shear load.
d) Compute GJ and E1.
3) 2D FEM Section.
a) Compute the section properties: I, M, Tem,.

4) FElement mass and element stiffness matrix computation.
5) Beam elements discretization.

6) Horseshoe elements discretization.

7) Aerodynamic influence coefficients.

8) System coupling.

9) Final calculations and print results.

4. RESULTS

The results of the first structural analysis are not very accu-

rate, this is due to the coarse mesh used for our computational
cost limitations. It has been checked that the memory required
grows exponentially with the number or elements used.
To get the shear centre position X, the torsional stiffness G.J
and the bending stiffness EI of the airfoil some loads have
been applied. The first load applied is a pure torsional load.
It has been imposed two forces with the same magnitude in
opposite directions separated a certain distance, the selected
points are the location of the ribs, 0.25%c and 0.6*c, both at
the section located at the span. Figure 4 shows the undeformed
wing before applying the forces.

Fig. 4: Undeformed wing

Figure 5 shows the deformed shape of a section when
applying torsional load of a magnitude F = 24522 N. It’s
possible to appreciate the deformation done by the forces
applied in opposite directions

Fig. 5: Deformed wing

Additionally, Figure 6 and Figure 7 shows the elastic twist
and the deflection of the wing along the span. It can be seen
that, as expected, both varies linearly. In addition, the twist
angle is equal to zero at the root of the wing which validates
the code.
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Fig. 6: Twist along the span
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Fig. 7: Deflection along the wing

The firsts constitutive relation terms can be obtained by
doing the first derivative of the twist and the deflection:

S11 = 60" = 3.1408¢ — 06;
So1 = h" = 2.2423¢ — 08;

€2y
(32)

The next step was to obtain the shear centre Applying a force
in a specific node accompanied by a torsional moment. Results
are shown the the Figure 8, it shows the twist angle distribution
when applying different forces, from this plot the shear centre
has been obtained by interpolating and finding the point where
the twist is equal to zero. The point found is:

Xsc = 0.3521
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Fig. 8: Twist along the chord

The last coefficients have been obtained applying pure shear
load, to do so, a force has been imposed at the shear centre,
it can be checked that the twist is at the order of 10~8 which
is practically zero. Figure 9 shows the deformed wing when
applying the force.

Fig. 9: Deformed wing

The last two constitutive relation terms can be obtained by
doing the first derivative of the twist and the second derivative

of the deflection:
S12 = 0" = —5.3501e — 09; (33)
Sog = R = 1.1626e — 06; (34)

With all the constitutive terms the E matrix is obtained by
doing the inverse:

g = | 318¢+05  1.46c+03
| —6.14¢+ 03 8.60e + 05

And, the torsional stiffness GJ and the bending stiffness E1:
GJ = 318KNm?

(35)

EI = 860KNm?

It is observed that the hypothesis done previously that there is
no coupling between the torsion (T) and the bending moment
(M), the order of magnitude of the coupling terms are low but
not enough to be considered negligible.

Figure 10 shows the wing section discretized in 224 element
that corresponds with a different colour, each element contains
5 nodes. The blue dot represents the position of the canter of
mass. The properties of the section are described in the Table
2.

03[

0.2

01y

01

02r

03r

Fig. 10: Discretized wing section

Total mass | Mass center Inertia

28.1590 Kg | x =046 m | I, = 2.19K gm?
y=0m I,=0
z=0m I, = 0.05kgm?

TABLE 2: Section properties

As explained in section 3.2, the aim of the aerodynamic part

of this project is to obtain Lift force following the series of
equations shown in the same section. In order to obtain this
force, it is required to compute the matrices [A] and [S] and
define the parameters U,, and p.
For the calculation of the coefficients of the matrix [A]
it is considered that the segment 4-1 is far away and, as
a consequence, its induced velocity is negligible. As there
are three different segments to work with, according to the
Horseshoe element, z; and x, take different values depending
on the induced velocity of the segment in question. Applying
this criteria, the following result([A] matrix (4) computed for 5
elements) is obtained. It can be observed that for each column
and row of the matrix [A], the values change. The diagonal
terms refer to the data of the same element. The matrix [S]
(36) is also computed for 5 elements in order to make it
computationally compatible with [A]. Finally, Lift force is
obtained for each element applying the equation (16).

—0.768 0.163  0.026  0.010  0.005
0.163 —0.768 0.163  0.026  0.010
[A]=| 0026 0163 -0768 0.163 0.026
0.010  0.026 0.163 —0.768 0.163
0.005 0.010 0026 0.163 —0.768
10000
01000
S]=[0 0 1 0 0 (36)
00010
00001

Once the relevant parameters and matrices are computed,
the study of the problem takes another step forward and leads
to the data that defines the eigenvalues and eigenvectors. The
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matrices computed during the computational process, lead
to the determination of divergence condition which is one
of the aims targeted in this project. Since the matrices [K],
[Q], [S], [A] and [I] are known, the matrix [Ka] can be
determined without further complication. The expression of
{F(u)}, equation (23) is easily calculated as a function of ¢
and {u} is the displacement vector(unknown). As the problem
is being resolved in homogeneous approach, the right side of
the equation (23) is zero. The first approach to solve this part
is to remove the fixed degrees of freedom (in this case the first
three) which belong to the first three rows and the first three
columns of [K] and [Ka]. The results auto-values correspond
to -1/¢eo.

Using the modes of the auto-values that are not nulls, the
divergence velocity is calculated through the dynamic pres-
sure: qD = -1/L(2(n+1)) where n is the number of elements
or panels. The values of the divergence speed are stored in L
and the order goes from the smallest value to biggest value in
negative. The smallest value is the one that marks the minor
divergence velocity in the vector of L. The dynamic pressure
is:

gD = 9.962 - 10°Pa

Using the following expression, the divergence velocity is

calculated: 1

Goo = ipooUOQO
DivergenceVelocity = 1.2625 - 10°m/s

The results of the eigenvectors and eigenvalues are ordered
in a specific way as seen in the case of divergence speed.
Usually, these values go from the highest to lowest. The
exception happens when there are zeros and they are relocated
to the first positions, because they are singular modes of the
matrix, gathering the real numbers together. In this problem,
due to the type of aerodynamic loads (influenced by just
torsional load) and structurally, the torsion and flexion are
uncoupled which means that the degrees of freedom related
to flexion are singular. This explains the resulting matrix with
2/3 of columns of zeros.

The autovector stores different modes in column where the
twist 6, deflexion h and rotation « are grouped in this order
(the first one is torsion and the last two are flexion).
However, the first five modes are represented on the Figure
11. The eigenvector of twist, first degree of freedom, is
plotted as a function of normalized span b. As observed, the
mode 1 is uniformly distributed while the rest of the modes
follow a sinus or cosine function. As the Figure shows the
different modes of deformed wing are coherent with the type
of aerodynamic loads applied. There are sinusoidal modes
because it is like the decomposition in Fourier series of
the degrees of freedom or rotation. The higher order modes
oscillate more than lower order modes. In order to fulfil the
boundary condition y=o0, a zero has been inserted in the first
position.
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Fig. 11: Modes of the DoF 1

The Figure 12 shows the second degree of freedom that
indicates deflexion and follows the same criteria than the first
degree of freedom.
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Fig. 12: Modes of the DoF 2

Finally the figure 13 shows the third degree of freedom that
is linked to the rotation about x-axis.
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Fig. 13: Modes of the DoF 3
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The following Figure 14 is the result of a test ran for
different aspect ratio of the wing. By means of observation, it

can be stated that the divergence speed decreases as the aspect
ratio increases.
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Fig. 14: Divergence speed vs Aspect Ratio

The computation of torsional force T, shear load F and bend-
ing moment M have been also carried out. Their behaviour
along the wing span is shown on the Figure 15, Figure 16
and Figure 17. The torsional force and shear load share the
progress along the non-dimensionalized span, the only differ-
ence is their order of magnitude. The last figure of bending

moment grows towards negative values as it approaches the
tip of the wing.
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5. CONCLUSIONS

This report has studied the aeroelastic problem by means of

a set of functions in MATLAB. The cases include divergence
conditions, theoretical study of flutter, unsteady aerodynamics,
etc.

To perform the analysis a 3D FEM code has been used to
obtain some of the needed parameters for the future study or
the divergence condition. During the process, it is seen that
there is a clear coupling between the torsional load and the
bending load. The last part of this project has been related
to the coupling that is carried out through transfer matrices.
These matrices transfer the structural output (displacement
vector) to aerodynamic input (angle of attack) and aerody-
namic output (lift distribution) to structural input (force vec-
tor). Once computed the previous requirements successfully,
a solver computes the divergence speed, modes and flutter
speed.

Finally, it is studied that the Finite Element Code is more
accurate for large Aspect Ratio than smaller ones because
of the use of Euler-Bernoulli approach. Also, it has been
observed that, for future analysis or real wings it’s convenient

to have low aspect ratios if the divergence condition wants to
be avoided.
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Project Aeroelasticity:

3D FEM Analysis — Experimental structural test

Material properties

: Young's : i
Material ?kenr:z Modulus Po:::i?)n s
9 (GPa)
(1) Skin 2000 9 0.27

g | 1 T \/ (2)Spars 1800 150 0.30
é ———— Z]wng bOj I_‘:. (3) Stringers 2300 70 0.35
@ front spar () rear spar

NACA0012 AO®

Figure 1: NACA0012 air foil experiment that will be analysed in this project.
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This is an aero elastic study for a clamped-free straight panel with a constant NACA0012
airfoil section done with a setup of a virtual laboratory. The main goal is to implement a set of
Mat lab functions to perform different kinds of aero elastic analysis, as the flutter study, the
divergence condition and effective stiffness.

To realise this study, a Finite Element code (FEM) is implemented to analyse the effective
structural properties of the wing.

The idea is to use it has a black box in order to simulate an experimental analysis. Commonly,
loads are putted at different points of the wing and with known inputs the displacement at given
points are measured and recorded.

So to simulate this experiment the finite element code is used. The inputs are the loads and the
displacement measure location. Then introducing it in the finite element solver the outputs that
are the displacement measure at the reading points defined are obtained.

To this end, the study is separated in 3parts: Regarding the structure, a 3D FEM code is used to
obtain the effective properties. Considering the wing as a flat plate and implementing the
beam’s FEM algorithm the shear centre, the effective torsional stiffness and the effective
bending stiffness is found. Then for steady aerodynamics the lifting-line solution by horseshoe
elements is implemented, and for unsteady aerodynamics the Theodorsen’s model is
implemented and a flutter study is made.

After a coupling between both is done, by implementing the transfer matrices: from the
structures output (displacements vector) to the aerodynamics input (angle of attack), and then
from the aerodynamics output (lift distribution) to structures input (force vector).

Finally the analysis results of this clamped-free straight panel with a constant NACA0012 airfoil
section are discussed. That principally are:

- Divergence speed for different wing aspect ratios.

- First modes associated to divergence conditions for different aspect ratios.

- Stability plots for flutter speed.
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3D FEM Analysis, experimental structural test:

To simulate a real experiment, a code where a set of coordinate are defined in which the
measurement are made and a set of coordinates where we apply the loads is implemented.

The inputs are the loads and the displacement measure location. Then introducing it in the finite
element solver, the outputs that are the displacement measure at the reading points defined
are obtained.

With that information, the shear centre of the airfoil section, the torsional stiffness and the
bending stiffness is obtained.

Assumptions:
e Small displacements and deformations that implies small angles and linear elasticity.
e Effective response of the flat surface described by elemental beam theory.

=[] = eenae)

GJ 0
[E] = [0 ﬁ]
(Ea.1)
The torsion is related to twist derivative through this torsional stiffness. The bending moment
M is related to the second derivative of the deflection of the wing through this bending

stiffness and is assumed constant thought out to the whole wing.
e This both phenomenon have to be uncoupled.

It should be verified if this uncoupled hypothesis can be reasonable made. There is a composed
structure where the section have different elements with different materials properties. So the
torsion and bending moment should be strictly uncoupled.
To guarantee it, the following constitutive matrix is used:

? S11 512] {T} 3 T
_ = = E 1 = { }

(Ea.2)
A function that calculus the deflection in different points of the wing is created. Also a set of
coordinates along the wing in a vector, which are the points where the loads are applied.
First, a pure torsional load forces (M=0) is applied, by applying 2 loads with the same
magnitude in opposite directions, to get Si1and Szi.
S =0T
S21 = W
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Image 2: Twist angle for a pure torsion.
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Image 3: Deflection of the wing for a pure
torsion.

Secondly a shear load is applied in the shear centre x.c to not cause any torsion (is related with
bending T=0, M’=-Q) in order to find Si, an S, that are defined as follows:

S12j ?/Q_
h” hlll
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¥

Image 4: Twist angle for a pure bending
moment.
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Image 5: Deflection for a pure bending
moment.

Then the shear centre needs to be found. To determine it, a force is applied and it is moved
between the two spars in order to find the point where no matter what force causes the wing,
there is only to bending but not twist. So to determine the shear centre the following equation

have to be solve:

00
—_ —_—=
dy

xSC

0
(Eq1.3)
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Image 5: Plot of the twist angle § for each defined point measure.

Thanks to FEM solver we found the shear centre position in function of the chord:
Xsc = 0,33064 * C

Finally, we found for this matrix E expressed previously in equation 2:

2D FEM Analysis, Section properties:

In this finite element analysis integrals over the section was done in order to obtain the section
properties. There is a NACA0012 profile file (Mat Lab script file) in which there are the nodal
coordinates, the nodal connectivity’s, and the material connectivity’s of the section of this case.

So a 2D FEM script is computed that allows to obtain this section properties thanks to this
following formulas:

Nodal coordinates [x] = [x(i) y® Z(i)] = [x(i)]
Nodal connectivities [T,] = [(i)f D7 (@53 (02]
Material connectivities [Tp] = [(m)(e)]

(Eq1.4)

A function is implemented to select the vectors data of each coordinate x, y and z, and the
connections between the nodes.
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The properties material matrix is used and the data are separated in order to calculate the
position and the number of elements and nodes for each element (that is 4 for each one).
With this 4 nodes the centre of each element is calculated.

Then the material properties matrix is defined as a vector:

Material properties [m] = [P(m)]

(Eq1.5)
Whit this matrix the properties of each section are determined. The nodal coordinates give the
coordinates of each node, (is a finite element discretization of the section). This mesh is defined
by assigning the coordinates of each points. Then the number of the nodes are assigned and in
order to connect it to each element the vertices of each element are implemented
(corresponding to each row by identifying the numbers of the corresponding nodes).

The same procedure is done for material properties: a matrix with the different material
properties is defined, here there are 3 different materials so the obtained matrix have 3 rows.
And then a vector is defined, assigning at each element corresponding to each row of this vector,
the index of the material corresponding to this element.

To obtain the properties for each element [e] those following algorithms are used:
Coordinates: xj[e] = [x]([Tm](e'j)), ji=1,..,4

Material: plél = [m]([Tm](e))
4
; ; 12 [e]
Centroid coordinates: x!€l = 7 X;

j=1
1
Area: Alel = > (a.b+c.d)

a= x{e] — x‘[f] ; b= xie] - xge]
c= xge] - xge] ; d= x‘[f] - xge]

(Eq1.6)

Once determined for each element the coordinates and the material, a function to determine
the centre of each element is defined. Thanks to the vectors a, b, c and d, a Mat lab function is
used to calculus the area of each element.

By ordering this data a matrix “elem” is created where:

-the first column is the x position of the element centre

-the second column is the z position of the element centre

-the thirds column is the area of each element

-the four column is the total mass per unit length of each element

A similar matrix is obtained for properties of each element that gives the kind of material (1, 2,
or 3 depending on which material), the density, the young module and the Poisson module for
each element.
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Finally by summing the columns of the element vectors, the total mass, the centre of mass of
the full profile in x and z coordinates, and the inertia using the shear centre founded previously

are determined.

The mass per unit length is computed, also the centre of mass and the inertia along the shear
centre per unit length making an algorithm with this following equations:

Total mass per unit length: m = Z plelalel
e
1
Center of mass: Xqym = EZ xlelplelgle]
e

Inertia of shear center per unit length: Iy, = Z(x[e] — x0)? plelalel

e

(Eq1.7)

The following plot shows the different properties of the 3 materials that compose this wing
profile. It is clearly differentiate by colours the stringers in brown, the spars in green and the

skin in blue.

Image 6: Plot showing the different section properties of the wing.

1D Beam analysis:
The goal of this part is to obtain the stiffness and the mass matrices, assuming that the wing is

discretised by beam elements.

a) Element matrices:
Imposing an element equilibrium, a system as follows is obtained:

MOJO} + OHu) = ()
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) 1
H(f) G
h® 1
. 0 . m®
_ 7 . _ 1
{u(l)} = ) {f(t)} = 0
. 2
h(1+1) (0
WICEY) E
@
e

(Eq1.8)

There are here 3 degrees of freedom for each node associated to the elastic twist 8!, the
deflection h) and the first derivative of the deflection (according to beams theory) Y that
corresponds to the section rotation about the X axis.
When a certain deflection is applied, the section of the wing will also rotate a certain angle. So
in this case the elastic axis is always perpendicular to the section of the beam (that works more
accurate for large aspect ratio beams).

Associated to this displacement of degrees of freedom, the torsion, the shear load and the
bending moment is obtained.

This following expression is used to determine the stiffness matrix K and the mass matrix
(lumped) M per unit length:

1 00 -1 0 0 0 0 o 0 0 0
0 00 0 0 0 0 12 6® o EI 610
[K@]_ﬂ 0 00 0 00 . EI 0 6l® 40®2 0 61O 4(1®)2
W -100 1 0 0 (®30 0 0 0 0 0
0 00 0 0 O 0 EI -6l 0o EI —6l®
lo 00 0 o o lo 610 40®)2 0 —61® 4q®)2]
1D = (D) _ 5,0
I, md 0 0 0 0
1 md m 0 0 0 0
o> 0 o o o o o0, 6 ,__  _
MOT==% o o I, md 0 &= %™ ¥em
0 0 0 md m 0
lo 0o 0 0o o o

(Eq1.8)

b) Matrices assembly:
Then the global mass and stiffness matrices have to be obtained following this matrix assembly
approach. In this case there are 3 degrees of freedom (DoF) per node, so the total number of
DoFs is: N=3(n+1).

Initialise global matrices: [K] = [0]yxy and [M] = [0]yxn
(Eq1.9)

The algorithm determine for each element i={1....n}, for each node a={1,2} and for each degree
of freedom j={1...3}:

p=3a-1D+; ; I=3([T]% —1)+/
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(Eq1.10)
Then for each element node b={1,2} and for each degree of freedom k={1...3}:

q=3b-D+k ; J=3([TJ% -1)+k

(Eq1.11)
Finally the matrices assembly is computed:
[K]ED = [K]ED + [K(i)](p,q)
[M]¢D = [M]ED + [MD]Pa)
(Eq1.12)

c) Element force vector:
The force vector is related to the aerodynamic part because the load system for aero elastic
problems come from this aerodynamic part. From the structural part a constant lift distribution
for each beam element and a constant torsion moment distribution is assumed. And then the
contribution of the mass in the both point’s loads at each node configuring the element are
accounted. This relation is given through this matrix:

0 1
" 1 0o _ .
) A l(i)/6 0 |I®
M =
U%=7 "0 1|0
1 0 mSC
l—l(i>/6 ol

(Eq1.13)

Basically for the lift and torsion moment, half of the contribution to each node by multiplying
by “I” the beam length and dividing it by 2 are given.

This is the interpolation or coupling matrix between the aerodynamic and the structural part.

Aerodynamic, Lifting line surface analysis:

In this part the discretization panels that correspond to the beam elements from the structural
analysis are defined. For this numerical analysis it’s important to obtain:

-Surface area of the element: S!/

-Normal vector of the element (vertical): nl!

-Coordinates of collocation points (3/4 length of the element, in the middle): x!”

The system that can be used to obtain the unknown, in this case the intensity of the vortex line
', comes from applying the Kutta condition at each colocation point:

n
Z(v1[]2] +v2[13] + v3[{}])x=x[i] +Uq |0l =0
=1

Induced velocity: (vl[é]+v2[é] + vzz])xzx[i]

Total velocity: U,
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(Eq1.14)

A small angles approximation is assumed so the freestream velocity is the normal times the
angle of attack of each section. In our case the angle of attack correspond to the elastic twist
because is how it is defines in the aero elastic analysis.

So this is the link between the structural and the aerodynamic part.
There is the angle of attack in one hand and through the definition of the lift obtained by solving
the system described in Eql1.15, it is related to the force vector in the structural analysis.
An algorithm is implemented to found out the induced velocity at point x due to a vortex
segment from x; to x, with vorticity I is:

[l] = m r}'xrk l[l] r] _ l[i].')"k
A |

Tk

3

n=x—x; ll=x,—x
(Eq1.15)

Then the following system of equations where [A] is the aerodynamic influence coefficients
matrix is found.

[ANI} = —Usfa}

A11 A12 Aln F[l] a[l]

[2] (2]
Az1 Ap r -y i«
A Any e Apnd ol !

(Eq1.16)

The coefficients of [A] are obtained by applying this formula, that involve the induce velocity at
each point:

Ay = (o) () + vl (69) + v (x0)) ol
(Eq1.17)

Then using the lift definition of Eq1.18 the total lift {L} at each panel in terms of the angle of
attack is found.

Total lift on the element: Ll = Poo U, SUIrlil
{L} = —posUo*[S][A] " {o}
(Eq1.18)
Where [S] is a diagonal matrix involving the plane form surface area of each panel:
st 0

0 o SM
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System coupling: force vector assemble:

Finally, what rest to do is the system coupling. In one hand the lift [L] have to be expressed in
terms of the unknown vector from the structural part {u}. That means finding an interpolation
matrix between {a} that only the twist angle and {u} that have 3 DoFs are important. The
relationship comes from the matrix [I]. So for this aerodynamic model the following equation
have to be solved:

210]
h®
1 ® ®
[il— gli] — = 4 - u
X 6 > [1 0 01 0 0] G(H_l) [I I] {u(”l)}
h(l+1)
ky(l+1) )
u®
alt] I I 0 .. 0 0] u®
(2] o I I .. 0 O 3
{“} = a - e LR e e e e u - [I]{u}
At 0O 0 0 .. I u(”)
ku(n+1)}

{L} = —po, US[ST[A] 1T ]{u}
(Eq1.20)

Then the force vector is assembled. To do it, the expression defined previously for the element
force vector, with the effective/average value of the constant distribution in each section 1]

and the effective torsion moment contribution about the shear centre mL‘j is recalled. And this
is related to the total lift LI of each panel through this simple expression.

[}
Ol emn

mS C

(Eq1.21)

After it is introduced into (Eq1.13) defined previously and the element force assembly matrix
becomes:

0 1 0
o 1 0 1
¢ l(l)/6 0 1171 . 1 l(i)/6 .
{f()}__ K ll(_i)[e]L[q:_ o L
1 0 1
|—10/6 ol |—10 /6]

(Eq1.22)

Then the force value at each pair of nodes corresponding to the same element by this
following expression that depend on the lift of each section can be determined:

F(l)
F(l+1)

fas]
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[1]
Moo

F
F@ gz] F] . 0 JAEY
1 2
FO  _L o o . 0o )P
FM 0 0 (n] \ ]
) -
lo o . ¢
(Eq1.23)
With this final matrix that relate the total force vector to the total lift vector, the final
expression that gives the coupling between the 2 pars is found.
1
{F(w} = _EpooUgo[Q][S] [A]7 [1]{u} = qo[Ka]
(Eq1.24)

In this last expression the aerodynamic pressure go. (that is constant) can be identified.

Solver part: Flutter analysis:

A constant NACAO012 section with different aspect ratios is studied. The divergence speed and
the different modes associated are obtained solving the model problem to this divergent
condition.

Also flutter speed is carried out in order to study the stability in terms of the freestream velocity,
and to get stability plots for the flutter analysis.

In order to solve (Eql.24) the Theodorsen’s aerodynamic model is used. The idea is to non-
dimensionalize the system following a procedure explained in this section. The system have
several degrees of freedom (depending on the number of elements in the discretization), which
is not a major issue in terms of the procedure.

Theodorsen’s aerodynamic model:
1(y) = TPpob?(uewb — bab — h) + 2 poucnbc(k)(uxd + b (% - a) 9 — i)
M. (y) = —Tpeob? (uoo (% — a) 6 +b (% + a2> 6 + aii)
+ 2MPotonb?c (k) (a + %) (uwe +b (% - a) 6 — fl)

(Eq1.25)

c Xsc Hiz)(K) wb
Where: b ==, a= , c(k) =——"2—=—, K=—:reduced frequency
2 b-1 HP () +in{? () Uco

For this case the Theodorsen’s function can be approximated as follows:

R 1 0,165 0,335
(K)=1- ;00455 03
Tk "k
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(Eq1.26)

Then expressing C(K)=F(K)+lg(k), it is possible to get:

0,5K* + 0,0765K2 + 1,8632.10~* —0,1080K3 — 8,8374.1074K
F(K) = —— and G(K) = —
K*+0,0921K? + 1,8632.10~* K*+0,0921K? + 1,8632.10~*
(Eq1.27)
[i] . o ~i
In this case: {T[ff} = npwbzugo([AR(K)] + L[A,(K)])[I I] {ﬁ(ﬂ‘ﬂ)}
. 142 [242 — 1
With:  Ag(K) = K2 [s ta a] FKGK) |22 —7 2at 1] +FK) [1 t+2a 0]
a 1 [2a -1 2 0
A a—1/2 0 _22 1 2 1 1+2a O
AU =k| |-krao (2@ —7 2at e ]
1 0 2 0
[ 2a — 1 2
[ = [1/2 0 0
Lo 1/2 0
(Eq1.28)
] [1] [i]
So the element force vector becomes: {f[‘]} =b ,}\] {m[s]c} (Eq1.29)
l L
Qy |\
— 1 0 S 1 0
with: QY = 17[0 1 ] , o =17!0 1 ] , {1 = gl p
o ilid/e 0o —ili/e
Therefore:  {F} = mpa,b3u3 [Q[A(K)][T]{2} (Eq1.30)
And the coupling matrices are defined in this project as follows:
oM o0 oo
Al Al2]
Q@ @ . 0 I I 0 .. 0 0
A Hl2] . 0 I I 0 0
lef= % @ - 0=
| 0 oL
(Eq1.31)

It is assumed that the degree of freedom referring to the vertical displacement, h, is
nondimensionalized by the half-chord, b, when writing alil Additionally, to make the units
consistent, all equations referring to forces are multiplied by b. So [lil = 111/b in the definition
of [@] and, rows and columns of both [K] and [M] corresponding to the second degree of
freedom of each node, must be multiplied by b. The non-dimensionalization of these matrices
is done by:

[7] = — [B"[M1[B] , [R] = —=— [B]"[K][B] [B]=[b 0] b:[(l) 2 8]
(Rl = o , o
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(Eq1.32)
Where wg = GJ /Is.b? for instance. Then the system can be expressed as follows:

(mb3w3[K]| — mb3w?[M]){@} = np.,b3UL[Q][ACK)][T]{0}

(Eq1.33)
Dividing everything by mp.b3UZ the following equations are obtained:
mb3ws ., mb3w? e
———|K| - ——— M| — A | {&} = {0
(,Tpmbmgo[] moopruz M1 - [llAC >][]){u} ©
m  b2w?wd . m bw? ., .
e e ——— M| - |F(K i} =
(T[,Ooobz U2 wz[ ] Tpub? UZ [ ] [ ( )]>{u} {0}
(Eql.34)
] . m _ b?w? . .
Then, deflnlng./l—w2 , u——npwbz , k= 0z and after applying the boundary conditions

(that allows to take out the first 3 rows and columns of all matrices, the resulting system yields:
o 1-1p 1 o -104 R
([KLL] [MLL] + m [KLL] [FLL(K)] — A[1D{a} = {0}

. -1 1 . -1,4
Where: [DLL(K)] = [KLL] 1[MLL] +W[KLL] 1[FLL(K)]
(Eq1.35)

Finally the flutter condition is given by:  det([D )| — 4¢[1]) = 0 (Eq1.36)

To solve the flutter analysis, first a set of kg is specified. Then for each kg the eigenvalues Ay of

ﬁ(kF) are found. That allows to obtain for each eigenvalues wr = % (complex valued)
F

and Ug = bRi—(M). Then the modes and K¢ for which Im(wg)<0 (unstable) are found. Finally the
F

limits of the K obtained are interpolated to found the Ug corresponding to flutter boundary.

Regarding the flutter analysis several modes (or eigenvalues) for each trial kappa are found.
From all those modes, only in those that may cause instabilities, (have associated non-null
negative imaginary components of the resulting frequency, we) are interesting.

To guess at which kappa range the flutter boundary is found (the point where the imaginary
component of the frequency changes sign), a sweep from 1e-3 to 1e3 in a logarithmic scale is
done. This way a huge range in the same computation is cover and the chances of capturing the
sign change for some modes is increased.
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Results

The study has been performed for a rectangular wing with aspect ratio of 5 with a NACA 0012
airfoil, clamped in one end and free in the other. In this study 3 different wing configurations
are studied varying the aspect ratio in values of 2, 5 and 10.

The study is started by measuring the displacements of the wing when applied some forces to
the structure. The forces needed are a torsional load and a shear load in order to find GJ and El
as well as the shear center. When the forces are applied the wing deforms in a certain way, as it
can be seen in the images 1, 2, 3 and 4 from the 3D FEM analysis explanation.

By applying a pure torsional load and a pure shear load on the wing using the test FEM Matlab
program provided can be found the stiffness of the wing and the shear center.

AR =2 AR =5 AR =10

GJ [Nm/rad] 18396 47289 96392
El [Nm] 1302500 1004800 1303000

Xsc 0.3491 0.3746 0.3903

Analysing the 2D section of the airfoil using the FEM method can be obtained the mass per
unit length of the wing the center of mass and the inertia at the shear center:

AR =2 AR=5 AR =10

Mass (kg/m) 28.159 28.159 28.159
™M 0.4597 0.4597 0.4597
lsc[kg m?] 2.2101 2.0697 2.0016
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Steady aerodynamics

Using this data, the wing is simplified to a beam, where can be extracted the K and M matrices.
Using the lifting line method is obtained the Ka matrix which is applied to the system. To find de
divergence speed for this system it is needed to perform the eigenvalues and eigenvectors of
the K and Ka matrices.

This way are obtained the different divergence speeds (Up) and their correspondent modes,
taking into account a standard air density of 1.225 Kg/mA3:

Umodes [M/s] Mode 1 Mode 2 Mode 3 Mode 4 Mode 5
AR=2 200.71 782.60 1599.7 2598.3 3753.3
AR=5 89.64 315.75 612.22 969.77 1382.6

AR=10 54.02 177.89 327.48 501.39 698.59
AR=2 AR=5 AR=10
Up [m/s] 200.71 89.64 54.02

As the AR increases, the divergence speed gets lower as the wing is less stiff and thus is more
susceptible to flutter.

When the different modes are represented can be seen how the variation in the theta and h
directions of the wing strongly related and react the same way to the divergence conditions:

hm]

Mode 1

Image 7: Modal oscillation in & and h for AR=5

In the gamma deflection graph is presented that the deflections in gamma angle, are really small
and oscillate back and forth between two values, while slowly drifting in value altogether.
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Image 8: Modal oscillation in y for AR=5.
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Image 9: Modal oscillation drift in y for AR=5.

When only one side of the oscillation is plotted, can be seen clearly the different drifts of the
modes and how as higher the mode higher is the amplitude of the oscillations.

For the other two degrees of freedom the modes are very similar, with slightly different
frequencies, and different amplitudes, fort the AR=10 case are higher movements and lower for
the AR=2 case, they are not presented here because the information they add is not relevant.
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Unsteady aerodynamics

Theodorsen’s approximation of the aerodynamic forces give an approximation to an unsteady
aerodynamic model, that can be coupled with the structural matrices calculated earlier can be
used to calculate the flutter speed of the wing with more accuracy than using the lifting line
method.

The Theodorsen method uses an initial approximation of the parameter k, so by sweeping
through different values the flutter speed stabilizes as the k is higher.

<10*

U [mis]

0 10 20 30 40 50 60 70 80 90 100
K

Image 9: Uk vs. k for AR=10.

Using the convergence plot it can be deduced that the flutter speed converges as kappa gets
higher, so to find the flutter speed is taken a value of kappa=100.

AR=2 AR=5 AR=10

Ue 43253 154.78 112.30

The velocities obtained are higher than in the steady aerodynamics case, and also go lower as
the aspect ratio of the wing increases so it is confirmed that when the wing is slim and long (high
aspect ratio) is more susceptible to flutter. Must also be noticed that the value for AR = 2 is very
high this can be due to some problems with the Theodorsen model implementation that fails
when the aspect ratio is low, because this velocity does not look correct.
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Conclusion and discussion:

First the "experimental test" was done and the location of the "shear centre", "inertial bending",
and the "inertial torsion" was found.

Then the response the aerodynamic model with the "lifting line" and the "Theodorsen model"
was analysed in order to found the divergence

Some checks were made to see how is the distribution of the lift in the lifting-line to verify that
itis elliptical, and to see what happens when the "aspect ratio" is varied, and finally to see how
the divergence varies with the "aspect ratio ".

Results shows that the model diverges with lower speeds when the aspect ratio or the wing size
is increased, this happens because the structure is the same but the wing is longer, has more
inertia and so is less stiff.

Finally, to solve the flatter studied with the Theodorsen model, all the equations were none
dimensioned in order to have the reduced frequency "k" with which we have found the solution
later.

The final results obtained in the steady aerodynamic method look reasonable, how the
divergence speed is lower for higher aspect ratios, and the absolute values look correct.

The modes for the theta and h seem also correct, and the plot for the gamma modes seems to
do estrange things, but looking at the calculations don’t seem to be bad, and so maybe the
results are ok and it is the real movement of the wing, as it is really small.

The Theodorsen method has caused more trouble, as it is more complex and difficult. The
equations have been applied the way the guides and classes explained, and the results seem ok,
giving flutter speeds a bit lower than in the steady case, which is reasonable, and the speed also
decreases with the aspect ratio. For the case with AR=2 the result is clearly not okay. Also, to
obtain the results the part of the solving of the equation with D the path taken to do so, the
method is not the one explained by the teacher in the explanations, but is the one that has given
us better results so has been done all the possible to get accurate results and is the better we
have been able to perform in the time we had.

Overall, the behaviour of the wing has been studied and can be obtained some approximations
of the speeds and situations where flutter can appear, from here the analysis can be further
expanded by making sure the unsteady aerodynamics approach is correctly calculated, and then
the shape of the wing and the airfoil may be changed, the shape can be more easily changed in
the program, because if the airfoil is changed the 3d FEM program may be changed and the
meshes redone, and this is not easy.
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1. Introduction

The objective of this assignment is to simulate in MATLAB the setup of a virtual
laboratory to study aeroelastic problems. The setup will simulate a semi-wing of
airfoil NACA0012 inside a wind tunnel. The section and properties are constant, as
seen in Figure 1, and a = 0.

Figure 1: Setup of the experiment and characteristics of the wing studied.

The analysis is done by solving the equilibrium equation (Equation 1) for a set of
panels along the span, treating the wing as a beam.

[M]{ii} + [K]{u} = {f} (1)

To take into account that the whole wing is a 3D structure, effective properties of
the beam structure are obtained with FEM, and matrices M and K of the beam
structure are obtained with the properties of the wing. To account for the lift of a
whole 3D wing, Prandtl lifting-line surface theory is used to obtain the divergence
speed and the modes, as it can also be applied to a panel division of a beam. For
the unsteady problem, Theodorsen’s unsteady aerodynamic model is used.

The virtual laboratory code has the followuing requirements.

Structures: Use of 3D FEM code to obtain effective properties and MATLAB
implementation of a beam’s FEM algorithm.

Aerodynamics: For steady aerodynamics: MATLAB implementation of lifting-
line solution by horseshoe elements. And for unsteady aerodynamics: MATLAB
implementation of Theodorsen’smodel.
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Coupling: MATLAB implementation of transfer matrices: structures output (dis-
placements vector) to aerodynamics input (angle of attack) and aerodynamics out-
put (lift distribution) to structures input (force vector).

Solvers: Divergence speed + modes and flutter speed.

Results: Obtain the stability plots for flutter, first modes associated to divergence
conditions for different aspect ratios and divergence speed for different wing aspect
ratios for a clamped-free straight panel with a constant NACAO0012 airfoil section.
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2. 3D FEM analysis - Experimental structural test

The aim is to obtain the shear center position z..(y), the torsional stiffness G.J(y)
and the bending stiffness EI(y). For the loading tests, sensors are placed along
the mesh (wing span and chord) with the help of function getNodes, that gets the
closest structure node to a determined point. Equidistant 6 sensor (from 0.1c to lc)
placements along the span from 1.5m to 4m distance from the root have been chosen
in order to avoid distorted values of the extremes. A 3D FEM solver provided will
be used to get to know the displacements.

Assumptions:
e Small displacements and deformations (small angles and linear elasticity too).

e Effective response can be described by elemental beam theory (Equation 2).

R A S o

Since it is not assumed that bending are torsion are uncoupled Equation 3 will be
used for the experiment.

01 [Su Sul [T\ o [T
{E”} - [521 sl W = BT )
Loading tests with pure torsional load and pure shear load are performed. The first

one to be performed is the pure torsional load, in order to find the x4 (y), because
it is where the load is applied in the second test.

Figure 2: Pure torsion load. Figure 3: Pure shear load.

To apply a pure torsional load, two forces of equal value but opposite direction are
applied at the wingtip at 0.1c and 0.6¢c. The elastic axis (z4.(y)) can be obtained
because it will be the point along the chord that will remain at y = 0. S1; and So;
can be obtained too, because when applying a pure torsional load M = 0, so:

811 - gl/T'7 Sgl - E///T (4)

bt

104



Advanced Aeroelasticity MUEA-ESEIAAT

Displacement in different sections (with polyfit)
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Figure 4: Displacement in different sections obtained when using function polyfit
with the y values of the sensors.

Displacement in different sections (results solver)
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Figure 5: Displacement in different sections obtained with the solver.

Figures 4 and 5 show very similar results. They are the prove that the polynomial
expressions to describe the displacements are well adjusted and it is possible to use
them to obtain the derivatives. This check would be very necessary in the generic
case that the deformations do not adjust to a linear regression and form a curve
that needs to be described with a higher degree polynomial.

Once the shear center position is known, a pure shear load is applied in the wingtip.
It is not possible to apply the force in the shear center because the structure does
not exist along all y = 0 and the mesh is not infinite, but en equivalent force with 0
resultant moment can be calculated as the sum of different forces in 3 coordinates,
as it can be seen in Figure 6.
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Figure 6: How to obtain an equivalent force to one applied at a non-existing node.

When applying a pure torsional load, "= 0 and M’ = —(Q so S5 and Sy, can be
obtained as seen in Equation 5.

Displacements in z

0.1

0.04

Sio=0/M=-0)Q, Sw=Hh/M=-h")Q (5)

Displacement in different sections (with polyfit)
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Figure 7: Displacement in the different sections when applying a pure shear load.

In both cases all displacements from the sections where the sensors are are evaluated
to obtain the derivative values that will be used to obtain E~! matrix, that will be
inverted to find E, ET and G.J. These values are calculated for a wing of ¢ = 1 and
AR = 5, but are considered constant for the rest of the problem regardless of the

aspect ratio.
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3. 2D FEM Analysis - Section properties

As a first step, all the properties of the section are calculated. In this problem, as
properties are constant, properties of the first section are calculated and they are
applied to the whole span taking into account that they are calculated per unit of
length.

To calculate the section properties it is necessary to use the connectivity matrices
(T,, and T,,). The four points of the square section are obtained along with its
density (specified in Figure 1). With these data the centroid coordinates, the area
of each element and the density of each element can be obtained to calculate the
total mass per unit of length, the center of mass in x and the inertia about the shear
center per unit of length.

Figure 8: Quadrilateral element of the mesh.

To calculate the area of the mesh, it is assumed that the quadrilateral elements have
an almost rectangular shape to apply the following assumption (Equation 6). Where
a, b, c and d are the sides of the quadrilateral calculated as the distance between the
(z, z) coordinates of adjacent nodes because they are in the same section y.

1
A[e] = §(ab + Cd) (6)

For the centroid, as the airfoil is symmetric in z and only coordinate x is needed,
only x coordinates of each node are accounted for.
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4. 1D Beam analysis

Once the properties per unit of length are calculated, it is possible to proceed to
1D analysis. The span of the wing is divided into elements (n_ely)for this purpose,
the more elements, the more numerical accuracy the results will have. In this as-
signment the results presented for the divergence speed and the first modes will be
corresponding to a 40 elements division.

4.1. Element matrices

The matrices K¢ and M€ can be calculated for all the elements. In this case, as
properties per unit of length are constant only one K¢ and one M€ are needed, and
they will be applied to all the elements. At this point, the aspect ratio of the wing
becomes relevant because the length of each element is calculated. The variation of
the aspect ratio is made by changing the span of the wing, to avoid variations in
the calculated shape and matrices that are made with ¢ = 1.

Figure 9: Stiffness and mass matrix of the wing.

4.2. Matrices assembly

After obtaining the element matrices they are assembled to find global structural
M and K. There are 3(n_ely + 1) DOF's because u will be evaluated at each side of
each element, as seen in Figure 10.

KU = K] 4 K)o (7)
M) = (M) [M[i]](p,q) (8)
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Figure 10: Element discretization at the beam.

4.3. Element force vector

The forces at each element can be discretized assigning the forces of the panel to its
nodes as seen in Figure 11. The distributed lift force is converted into two forces and
two moments applied (one of each) at each node of the element, while the moment
is converted into two moments applied one at each node.

Figure 11: Element forces discretization.

Figure 12: Element forces vector.

10
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5. Aerodynamics

Once structural calculations have been done, it is time to evaluate the aerodynamic
side of the problem. Two different methods will be used to account for steady and
unsteady aerodynamics.

5.1. Lifting line surface analysis

The objective of the aerodynamic analysis is to find the aerodynamic forces seen
in Figure 12, that, as seen in Section 6, can be obtained from the total lift on the
elements matrix (L). The lift on an element can be expressed as seen in Equation 9.

L = p U Sl (9)

Where the surface of each element can be directly calculated and I' can be obtained
through the system in Figure 13.

Figure 13: System of equations to find I'.

So the total lift can be expressed as:

{L} = —p UL [S][A] {o} (10)

And, as seen in Figure 13, the aerodynamic influence coefficients matrix can be
calculated using the lifting line surface analysis. Induced velocities are calculated
at collocation points of each panel at 3/4c¢ as the sum of the contributions of the
horseshoe vortex segments. As a summary, the aerodynamic analysis’ outputs are
matrices [S] (surface of each element) and [A] (aerodynamic influence coefficients).

5.2. Theodorsen’s aerodynamic model

According to Theodorsen’s model the aerodynamic expressions for the lift and the
moment are:

Figure 14: Lift and moment in Theodorsen’s model.

11
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The objective of the aerodynamic analysis is to find the aerodynamic forces seen in
Figure 12. In this case, the aerodynamic forces seen in Figure 12 can be expressed
as:

Figure 15: Aerodynamic forces in Theodorsen’s model.

Where:

Figure 16: Ag(k), A;(k) and I matrices definition.
Where a and b are:
a=x./b—1, b=c/2 (11)

and the Theodorsen’s function C'(k) = F (k) +iG(k) (to account for attenuation by
wake vorticity) is given by the equation in Figure 17 in this case.

Figure 17: Coefficients F(k) and G(k) of Theodorsen’s function.

12
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6. Systems coupling - Force vector assembly

6.1. Divergence analysis

The L matrix of the steady aerodynamic analysis is expressed in terms of «, and
needs to be expressed in terms of the structural unknown vector to be coupled into
the system. ol ( = 6l) is also calculated for every element, and needs to be applied
to the nodes. Figure 18 illustrates how this conversion is made to obtain Equation
12.

{L} = —p UL [S|[A] 7 [T[{u} (12)

Figure 18: Expression of « in terms of the structural unknown vector.

Now, the aerodynamic forces are ready to be coupled into the element equilibrium
equation:

MO} + KV {ul} = {£) (13)
where {ii} is 0 because it is a steady problem and where (only 6 is considered):
, . (ol )
(9@ ) ION Tll
B 0 Ff?}
, (@) 0 . MY
? ’7 . 3
{UH} T Y gl (T Y gl (o {f{ ]} T2[1i] (14)
R(+D) 0 Fl
(7D . 0 M2m

\ Ve

Each element’s lift and moment is expressed in terms of L, and the force assembly
matrix Q is obtained to get:

13
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Figure 19: RHS of the equation.

So:
[K{u} = {F(u)} = —¢[Kd]{u} (15)

(Ks] + ¢oo[Ka]){u} = 0 (16)

To get the divergence speed and nodes, the first 3 DOF's of each matrix are prescribed
and the structural stifness matrix is adimensionalized with the analytical solution
for the divergence condition (Qp, = 7%/4b> GJ/ceCl,,) for a wing with constant
properties. The aerodynamic stiffness matrix (K,) needs to be inverted to solve
the system and find the eigenvalues but as there are 0s in the diagonal it is not
possible to invert it. the solution to this numerical problem has been adding an
almost negligible value (121071%) to the diagonal of the matrix to be able to invert
it. The eigenvalues and eigenvectors of the system have been found.

The adimensional divergence condition ()p is given by the minimum eigenvalue. To
find Up the value is dimensionalized multiplying it by ()p, and later obtaining the
Up (p is known). The first five modes are found at the end of the eigenvector matrix.
So the minimum divergence speed and the first five modes of the wing are obtained.

6.2. Flutter analysis

In this case, having obtained the aerodynamic element forces as a function of k,
when adding the element force vector, the F matrix is:

Figure 20: RHS of the equation.

The element force vector and the force assembly matrix in this case are:

Figure 21: Shape of the element force vector.

14

113



Advanced Aeroelasticity MUEA-ESEIAAT

To solve the system, matrices M and K are adimensionalized and the system is
expressed:

Figure 22: Equilibrium equation for the non-steady case.

Applying the definitions in Figure 23 and the boundary conditions (prescribing the
first 3 DOFs) the system to be solved becomes as in Figure 24.

Figure 23: Values of A\, y and k.

Figure 24: Resulting system for the non-steady case.

The flutter condition is given by det([D(kr)] — Ap[1]) = 0. To solve the system a set
of values for k are defined to be tried in different iterations and all the values that
depend on it are recalculated each time. The eigenvalues of D 11 are obtained. For
every iteration, values wr and Uy are calculated and stored with their corresponding
k. The values of wp that have a non-null negative imaginary part are identified,
because it means that those modes may cause instabilities. To evaluate this, the
positions of all the modes that create instability are stored in a matrix, so that they
can later be identified and associated to their x. The minimum Ur for each x with
instability is evaluated as well.

15
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7.

Code structure

. Input data and geometric parameters calculation: Input data given

is read from the mesh file naca0012. The geometry of the entire wing problem
is defined, total number of beams and plates, total number of nodes, number
of nodes for each element, etc. Physical and material properties (Young’s
modulus, densities, etc). Also all the sensors needed to store the displacements
through the span and sections.

. Find shear center: First loading test with the given functions, with a pure

torsional load. Evaluate displacements and find the elastic axis.

Compute the pure shear load: Second loading test with a force placed
in the elastic axis.

Obtain E matrix: Calculation of the derivatives of the displacements and 6
angles. Computation of E with S11, S12, S21 and S22.

Compute section properties: Obtainment of /¢, total mass per unit length
and the center of mass.

Obtainment of K[e] and MJe| and the corresponding assembly.

Lifting-line surface analysis: Computation of all the induced velocities
due to the vortex in all the discretized panels along the wing. Create the
aerodynamic influence coefficients matrix. And the matrix assembly of K,ero
needed to solve the total lift of the elements. Introduce the element force
vector assembly.

. Divergence analysis: Solve the determinant of the system and find the

eigenvalues and first five modes (eigenvectors). And plot the comparison be-
tween aspect ratios.

. Iteration for different aspect ratios (Return to step 6)

10.

Flutter analysis: Solve the instabilities for a AR = 5 and 5 elements in the
span. Analysis of the behaviour near the boundary flutter speeds. Plot the
refinement iterations between closer values of k.
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8. Results

8.1. Divergence speed for different wing aspect ratios

Figure 25: Divergence speeds of the wing for different aspect ratios.

Divergence occurs when the increase in the aerodynamic moment is bigger than the
increase in restoring moment from the wing’s torsional stiffness. Figure 25 shows
how divergence speed decreases with the aspect ratio. This happens because the
higher the aspect ratio is, the more span (c is constant) the torsion has to make an
influence on 6. A very high speed for a square wing (as seen in Figure 25) makes
sense because the necessary lift to twist the wing enough to reach divergence is very
high.

AR 1 2 3 4 5
Up [m/s] | 5070.3 1372.4 662.8 396.2 272.0
AR 6 7 8 9 10
Up [m/s] | 2004 1545 1237 1019 86.8

Table 1: Divergence speeds for aspect ratios 1 to 10.
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8.2.

Eigenvector

Eigenveactor

Eigenvector

First modes associated to divergence conditions for dif-

ferent aspect ratios

First 5 modes of the elastic twist with AR = 1

03p
02f
0.1
ol
01
02
03
0 0.1 0.2 0.3 04 05 06 07 08 09 1
Span (y/b)
Figure 26: AR = 1.
6 First 5 modes of the elastic twist with AR = 5
02 e
01f
ol
<01
02 ¢
03
01 02 03 04 05 06 07 0B 08 1
Span (y/)
Figure 28: AR = 5.
i First 5 modes of the elastic twist with AR = 8
0.2 - :
ol
b
-0.1
02 3
03 L I | | L 1 ) | |
01 02 03 04 05 06 07 08 09 1
Span (y/b)

Figure 30: AR = 8.

Eigenvector

Eigenvector

First 5 modes of the elastic twist with AR =4

0.3
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Span (y/b)
Figure 27: AR = 4.
i First 5 modes of the elastic twist with AR =6
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Span (y/b)
Figure 29: AR = 6.
. First 5 modes of the elastic twist with AR = 10
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0.1 !
-]
H
g 0
&
s
0.1
02
03 ~ . . . . . -~ -
0 0.1 0z 03 04 05 06 o7 08 09 1
Span (y/b)

Figure 31: AR = 10.

Figure 32: First five modes for different AR.
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8.3. Flutter stability plots

For the flutter analysis, x has been evaluated using a logarithmic distribution from
k = 1073 to k = 103, since the aim is to guess at which x range the flutter boundary
appears (point where the imaginary component of wr changes sign. In this way, a
wide range is covered in the same computation. Figures 33 and 36 show plots of the
wp and minimum Uy for these ks. These results have been evaluated for the simple
case of 5 elements.

W (k) between k = 1e-3 to 1e3
25+

# iteration
k1
k2
k3
kd
k5
8 H k6

0.5r

-0.5

modes

Figure 33: W} for k = 1072 to 10°.

Figure 33 and Table 2 show that the wy has non-null negative imaginary component
for k = 0.001 and for k > 10. The very small value of x has an associated speed that
is not reachable in the problem’s conditions, so the search for the flutter boundary
is made around x = 10.

kg Minimum unstable speed [m/s] Unstable modes
0.001 69044.40 11, 12, 13, 14
0.01 - -

0.1 - -

1 _ _

10 2483 12, 13, 14

100 2.438 12, 13, 14

1000 0.25 12, 13, 14

Table 2: Minimum unstable speed and unstable modes for £ 0.001 to 1000.
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In the first refinement between x = 1 and x = 10, the change can be seen between
k=1 and k = 2 (see Figure 34 and Table 3). This leads to a second refinement.

Imaginary part of Wr{k] between values of k =1:1:10

Imi{W_)

Figure 34: Wy for k = 10 to 100.

ks Minimum unstable speed [m/s] Unstable modes

1 _ -

2 244.21 14

3 162.81 14

1 96.90 13, 14

5 49.77 12, 13, 14
6 A1.47 12, 13, 14
7 35.55 12, 13, 14
8 31.10 12, 13, 14
9 27.65 12, 13, 14
10 24.88 12, 13, 14

Table 3: Minimum unstable speed and unstable modes for x 1 to 10.

The second refinement is made between x = 1 and k = 2 (see Table 4). This process
should be iterative and automatized, but it has not been implemented in the code.
In Figure 35, a more clear tendency of the imaginary part getting smaller until it
gets positive can be seen, especially between iteration 1 and 2, corresponding to
k=1 and k = 1.1. The value of the minimum flutter speed is around 444m/s as it
can be seen in the table and appears in mode 14.
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Imaginary part of Wf(k) between kf =1:0.1:2

# iteration

Im(W,)

modes

Figure 35: Wy for k =1 to 2.

ks  Minimum unstable speed [m/s] Unstable modes

1 - -

1.1 444.03 14
1.2 407.02 14
1.3 375.71 14
14 348.88 14
1.5 325.62 14
1.6 305.27 14
1.7 287.31 14
1.8 271.35 14
1.9 257.07 14
2 244.21 14

Table 4: Minimum unstable speed and unstable modes for x 1 to 2.

Including Figure 33 has been considered interesting, not because it provides in-
teresting flutter data but because it gives information about the tendency of the
eigenvalues and it is a useful way to test that the code works properly even in the
nodes that may not cause instabilities.
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Figure 36: Minimum flutter speeds for k = 1072 to 103.
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9. Conclusions

In this assignment, it can be seen that simulating 3D conditions when doing an
aeroelastic beam analysis is possible. When solving a problem of this kind, it is
important to know how to couple the different systems, so that the DOFs and the
equations of every system match with each other.

An analysis for a stable case and an unstable case have been performed. A method to
perform further iterations in the refinement of the unstable case could be performed
as an improvement. Further improvements could include variations on different
parameters of the structure, such as the AR, to see how it affects flutter. Other
assessments could include the variation of material properties.

Since the unsteady case study is complex, 5 elements have been used to perform
calculations. Increasing the number of elements would be interesting too. For the
steady case, mirroring in the horseshoe vortex for the study of the behavior of a
whole wing can be included.

To approximate the study to a more real wing, other features could be added to the
wing, such as sweep, dihedral or taper ratio. But to include these kind of features
the 3D structure model should be changed, just like changing the wing that is going
to be studied in a wind tunnel.
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10. Code

10.1. Main

% Initialize
clear

close all
NG

%% Data

% Geometry data
meshfile = ’naca0012’;
c = 1; % Chord
b = bx*c; % Span
AR = b/c; 7% Aspect Ratio
Xsc = 0; % shear center (later will be computed)
n_ely = 5; 7 #elements in the span
% Material data
mat = [
% Density Young ©Poisson
2000, 9e9, 0.27; % Skin
1800, 150e9, 0.30; % Spars
2300, 70e9, 0.35; 7 Stringers
K

%% Setup lab

[probData,vlab] =

SetupTest (meshfile,c,b,mat);

%% Setup displacement sensors

% - Each row correspond
setup

X_app = [0.1, 4, 0
0.2, 4, 0 %
0.4, 4, 0 yA
0.6, 4, 0 %
0.8, 4, 0 yA
1, 4, 0 yA
0.1, 3.5, O %
0.2, 3.5, 0 %
0.4, 3.5, O %
0.6, 3.5, O yA
0.8, 3.5, O yA
1, 3.5, 0 %
0.1, 3, 0 %
0.2, 3, 0 yA
0.4, 3, 0 %

to the coordinates of a

% sensor 1 si
sensor 2 sl

sensor 3 sl
sensor 4 sl
sensor 5 sl
sensor 6 sl
sensor 1 s2
sensor 2 s2
sensor 3 s2
sensor 4 s2
sensor 5 s2
sensor 6 s2
sensor 1 s3
sensor 2 s3

sensor 3 s3

24
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0.6, 3, 0 % sensor 4 s3
0.8, 3, 0 % sensor 5 s3
1, 3, 0 % sensor 6 s3
0.1, 2.5, 0 % sensor 1 s4
0.2, 2.5, 0 % sensor 2 s4
0.4, 2.5, 0 % sensor 3 s4
0.6, 2.5, 0 % sensor 4 s4
0.8, 2.5, 0 % sensor 5 s4
1, 2.5, 0 % sensor 6 s4
0.1, 2, 0 % sensor 1 sb
0.2, 2, 0 % sensor 2 sb5
0.4, 2, 0 % sensor 3 sb
0.6, 2, 0 % sensor 4 sb5
0.8, 2, 0 % sensor 5 sb
1, 2, 0 % sensor 6 sb5
0.1, 1.5, O % sensor 1 s6
0.2, 1.5, O % sensor 2 s6
0.4, 1.5, O % sensor 3 s6
0.6, 1.5, O % sensor 4 s6
0.8, 1.5, 0 % sensor 5 s6
1, 1.5, 01; % sensor 6 s6
[*,X_nod] = probData.MeshData{1l}.getNodes (X_app);

]
—

%% Pure torsion load force set CASE 1ID

% forces to pure torsion load
cas = 1;
[fext_T, T] = set_forces(cas,Xsc);

% PURE TORSION CASE (case ID = 1)
[rep_F_T,rep_D_T,rep_R_T,vLab,T_T,M_T]
fext_T,X_nod,vLab,’caselID’,1);

LoadingTest (probData,

%% Postprocessing results
% study of the sections displacements (in this case solution of the
shear center)

[Xsc, d_theta_T, dd_h_T, dd_theta_T, ddd_h_T] = findshearcenter (
X_nod, rep_D_T, cas, Xsc);

%% Compute the pure shear load (bending) case (case ID = 2)

% forces to pure bending load

cas = 2;

[fext_M, M_test] = set_forces(cas, Xsc);

% solutions of the loading test

[rep_F_M, rep_D_M, rep_R_M, vlab, T_M, M_M] = LoadingTest (probData,
fext_M, X_nod, vlLab, ’caselID’, 2);

% study of the sections displacements
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[Xsc, d_theta_M, dd_h_M, dd_theta_M, ddd_h_M] = findshearcenter (

X_nod, rep_D_M, cas, Xsc);

% obtain the matrix of the assumed uncoupled structure
[E] = obtain_E(T,M_test,d_theta_T,dd_h_T,dd_theta_M,ddd_h_M)

%% compute all the section section properties
ii = 0;

% import the data from profile
[Tn,Tm,Xnod] = import_mesh();

[Isc, d, mass_tot]
for b = 1:1:5

[K, M, GJ, EI]

obtain_K_M(b, n_ely, E, Isc, mass_tot,

[M_ass, K_ass, Tn_y, Y_coord] = assembly(K, M, n_ely, b);

%% Horsheshoe elements discretization
[K_aero, e, RHO] = 1lift_line(b, Y_coord, Xsc, n_ely);

% SOLVERS 7%

%% Divergence speed + modes

% midterm problem

[V_theta_5, lambda_prima, Ud] = divergence (K_aero, K_ass

, €, ¢, RHO, Y_coord, n_ely);

ii = ii+1;
Ud_min(ii) = min(U4);
end
% plot different divergence speeds
figure (20)
hold on
plot(1:1:5, Ud_min);
title(’Divergence speeds for different AR’);
xlabel (?AR’);
ylabel (’Divergence speeds (Ud)’);
grid on;
ht Flutter analysis hhthhhthhhlthhlhthhlehthhlththhhhthhht’hhh

% theodorsen

% wing geometry

b = AR * c;
l_elem = b/n_ely;

% nodal connectivities en 1D

26
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for e = 1:n_ely
Tnod(e,1) = e;
Tnod (e, 2) e+l;

end

% utilizamos las matrices y valores para el AR = 5 del analisis

anterior

% creamos la nueva matriz Q

Q_mat = zeros(3*n_ely,

Q = (1l_elem/(2%b))*[ 1
0
0
1
0
0

for e = 1:n_ely

3*n_ely);

)

)

0
1
l_elem/(6%Db);
0
1

>

>

-1_elem/(6*b)];

Q_mat ((3*%(e-1)+1:3%x(e-1)+6), (3*xe-2):(3*xe-1) ) = Q;

end

% iniciamos con parametros

B = c¢c/2;
a (Xsc/B)-1;

W_theta = sqrt(GJ/(Isc*B~2));

%% Matrices A de theodorsen

AR_a = [1/8+a"2 a;

a 11;
AR_b = [2¥a"2-0.5 2*xa+1;
2%a-1 2];
AR_c = [1+2*xa O0;
2 0]l;

AI_a = [a-0.5 0;
1 01;

=
[}
|
o’
]

2*%a-1 2];
Al_c = [1+2*xa O0;
2 0];

I =100.50
0 0.5 0];

I_mat

for e = 1:n_ely

I_mat ((3*xe-2) : (3*xe-

end

[2¥a~2-0.5 2*xa+1;

zeros (3*n_ely ,n_ely*3);

1), 1+3*x(e-1) :6+3*x(e-1)) = [I I];

%% Modificar las matrices estructurales

b_mat = [1 0 0;
0 B 0;
0 0 11;
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B_mat
B_mat

zeros (n_ely*3,n_ely*3);
diag(b);

M_theo = zeros(n_ely*3,n_ely*3);
M_theo = (1/(mass_tot*B~3))*B_mat’*M_ass*B_mat;

K_theo = zeros(n_ely*3,n_ely*3);
K_theo = (1/(mass_tot*W_theta~2*B~3))*B_mat ’>*K_ass*B_mat;

% presciibed DOF
K_theo = K_theo(4:(n_ely*3+3) ,4:(n_ely*3+3));
M_theo M_theo(4:(n_ely*3+3) ,4:(n_ely*3+3));

%% Solver system

% from pdf flutter analysis
U_inf = 1;
rho = 1;

mu = mass_tot/(pi*rho*B~2);

% initial value for k
k = 107-3;

% para n_ely=5 vemos aparcion de flutter de k = 10 a 100
% refinamos esa area para estudiar mejor

% k_min = 10;

% k_max = 100;

% ite = 0;

w_f = zeros(10,n_ely);
U_f = zeros(10,n_ely);
mode = zeros(mn_ely, 10);

% comienza las iteraciones para valores de k
% Specify a set of a trial values for k_F

for ite = 1:6
% for k = k_min:10:k_max
%hite = ite + 1;

F = (0.5%k"4 + 0.0765%k"2 + 1.8632%x10°-4)/(k"4 + 0.0921%xk"2 +
1.8632%x10"-4) ;

G = (-0.1080*k"3 - 8.8374*k*10"-4)/(k"4 + 0.0921%k"2 +
1.8632%x10"-4) ;

A_R = k"2xAR_a + kx*xG*xAR_b + Fx*AR_c;
AT = kxATI_a - k*F*xAI_b + G*AI_c;
A_mat = zeros(n_ely*3, n_ely*3);

for i = 1:n_ely
A_mat (1+3*(i-1) :2+3*%(i-1) ,1+3*%(i-1) :2+43*%(i-1)) = A_R + 1ix
A_TI;
end

% system to solve
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end

F_LL = Q_mat*A_mat*I_mat;
F_LL = F_LL(4:(n_ely*3+3) ,4:(n_ely*3+3));
D_LL = inv(K_theo)*M_theo + ((muxk~2) " (-1))*inv(K_theo)*F_LL;

% For each k_F, find the eigenvalue of D(k), which correspond
to lambda_F.

[vectors_flutt, lambda_flutt] = eig(D_LL);

lambda_flutt = diag(lambda_flutt);

% For each eigenvalue lambda_F, and the corresponding k, obtain
mod = 1;
for e = 1:size(lambda_flutt,1)

w_f (ite,e) = W_theta/sqrt(lambda_flutt(e));
% Find modes and K_f ranges for which Im(w_F)<0 (unstable).

U_f(ite,e) = B * real(w_f(ite,e))/k;

% find modes and k ranges for which Im(wf) <O

% unstable

if imag(w_f(ite,e))<0 && real (U_f (ite,e))>0
% # modes where unstable

mode_range (ite ,mod) = e;
U_f_danger (ite,mod) = U_f(ite,e);
mod = mod + 1;

end

% number of modes in unstable conditions
mod_ite(ite) = mod;

end

% find the minimum real values for flutter speed for each k
[U_f_min(1l,ite), index(1l,ite)] = min(real (U_f(ite,:)));

% the eigenvalue lambda to the minimum uf of the iteration
lambda_min(l,ite) = lambda_flutt (index(1l,ite));

%Repeat for the next k

%sweep from le-3 to 1e3 in a logarithmic scale.
k = k *x 10;

k_mat(1l,ite) = k;

% plot the minimun real flutter speeds
figure (30)

hold on

plot(k_mat(1,:),U_f_min(1,:));
title(’Minimum flutter speeds’)

xlabel (’k’)

ylabel (’Flutter Speed (m/s)’)

set (gca, ’XScale’, ’log’)

grid on
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% plot the imaginary part of w_f to see when is <O
figure (40)
hold on
for ite = 1:6
plot(l:1:n_ely*3,imag(w_f (ite,:)));
end
title (CW_f (k) ’)
xlabel (’modes’)
ylabel (’W_f)
leg = legend(’k1’,’k2’,°k3’,’k4’,°k5’,°k6’,°k7’,°k8’,°k9’,°k10’);
title(leg,’# iteration’)
grid on

% Interpolate the limits of the k_F ranges obtained to obtained to
% obtain the U_F corresponding to flutter boundary.
%% RESULTS REQUIRED %%

% For a clamped-free straight panel with constant NACAO0O012 airfoil
% section, obtain:

% 1 - Divergence speed for different wing aspect ratios.
% 2 - First modes associated to divergence conditions for different
aspect

% ratios.
% 3 - Stability plots for flutter.

10.2. Functions

function [M_ass, K_ass, Tn_y, Y_coord] = assembly(K, M, n_ely, span

)
% 1D beam analysis

l_elem = span/n_ely; ) define criteria to set the lenght of each
element

for i = 1:n_ely
% nodal connectivities en y

Tn_y (i,1) = i ;
Tn_y (1 ,2) i+ 1 5

% nodal coordinate
Y_coord(i)= (l_elem/2)+1_elem*(i-1);

end

K_ass = zeros(3* (n_ely + 1), 3% (n_ely + 1));
M_ass zeros (3* (n_ely + 1), 3% (n_ely + 1));

for e l:n_ely
for nod = 1:2
for dof = 1:3
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p:
I =
for
end
end
end
end
end

function [V_theta_5,

e, C, rho, vy,

%% boundary conditions

3% (nod - 1) + dof;

3* ((Tn_y(e,nod))

nod_b = 1:2
for dof_2 =1

q
J

K_ass(I,J)
M_ass(I,J)

end

n_ely)

Ka = Ka(4:end, 4:end);
Ks = Ks(4:end, 4:end);

3 &

- 1) + dof;

3*(nod_b-1) + dof_2;
3*((Tn_y(e,nod_b))-1) + dof_2;

K_ass(I,J) + K(p,q);
M_ass(I,J) + M(p,q);

--> prescribe the first 3 dof

% analitical solution for constant properties;

Cl_alpha = 2x*pi;

QD = (pi~2 * GJ) / (4 * b"2 x Cl_alpha * e * C);

%% solve the eigenvalues

Ks = Ks/QD;

Ka

% eigenvalues of
[V,lambda_prima]

the matrix
= eig(-Ka\Ks)

’

Ka + eye(length(Ka(1,:)))*10"-10;

lambda_prima = diag(lambda_prima) ;

% positives

lambda_prima = lambda_prima(lambda_prima>0);
min_lambda = min(lambda_prima) ;
3=0;

for i=1:n_ely
if lambda_pr
j=1+j;

ima (i) >0

lambda_prima, Ud] = divergence(Ka, Ks, GJ, b,

in each matrix

% divergence condition given by the minimum value of the
lambda prima
= lambda_prima(i);

gD (1, 3)
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% divergence speed at each panel
Ud(1,j) = sqrt(QD*qD(1,j)*2/rho);
end
end

% to evaluate divergence its interesting the minimum value of the

qD
min_qd = min(qD);

% only interest the ones corresponding to theta values

V_theta = V(1:3:end,:);

% the y/N in the x-axis of the plot

modes_y_adim = zeros(l,n_ely);

for i=1:n_ely
modes_y_adim(1,i)=y(i)/b;

end

%% the first 5 ones

nummodes = 5;

j=n_elyx*3;

for i = l:nummodes
V_theta_5(:,i) = V_theta(:,j);
i=3- 1

end

% plot the 5 modes

figure (10)

hold on

for mode=1:nummodes
modes_x = V_theta_5(:,mode) ;
plot (modes_y_adim, modes_x);

end
grid on
box on

title(’First 5 modes of the elastic twist with AR = 1 ’);

xlabel (’Span (y/b)’);
ylabel (’Eigenvector’);
x1lim ([0 1]);

end

function [Xsc_new, d_theta, dd_h, dd_theta,
X_nod, rep_D, cas, Xsc)

% CASE 1ID 1 PURE TORSION LOAD

% regresion linial de los displacement

disp_X_sl=rep_D(1:6,4); % X displacement
disp_Y_sl=rep_D(1:6,5); % Y displacement
disp_Z_sl=rep_D(1:6,6); % Z displacement

32
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disp_X_s2=rep_D(7:12,4); A
disp_Y_s2=rep_D(7:12,5); b
disp_Z_s2=rep_D(7:12,6); A

disp_X_s3=rep_D(13:
disp_Y_s3=rep_D(13:
disp_Z_s3=rep_D(13:

disp_X_s4=rep_D(19:
disp_Y_s4=rep_D(19:
disp_Z_s4=rep_D(19:

disp_X_sb=rep_D(25:
disp_Y_sb=rep_D(25:
disp_Z_sb5=rep_D(25:

disp_X_s6=rep_D (31
disp_Y_s6=rep_D (31
disp_Z_s6=rep_D (31

X=X_nod(1:6,1);
Y=X_nod (1:6:31,2);

figure ()
plot (X, disp_Z_s1,
disp_Z_s5, X,

ylabel (’Displacements in z

xlabel (’x/c’);
title(’Displacement
grid on;

leg =
title (leg,’y(m) )

x=[0:0.1:1];
polynomial

18,4); %
18,5); %
18,6); %
24,4);
24.,5);
24,6);
30,4); %
30,5); %
30,6); %
:36,4); %
:36,5); %
:36,6);

%
X,

disp_Z_s2, X,
disp_Z_s6);
1);

<

<

]

displacement s2
displacement s2
displacement s2

displacement s3
displacement s3
displacement s3

displacement s3
displacement s3
displacement s3

displacement s3
displacement s3
displacement s3
displacement s3
displacement s3

displacement s3

coordinate (chord)

disp_Z_s3, X,

disp_Z_s4, X,

in different sections (results solver)’);

pl=polyfit(X,disp_Z_s1,1); %

yi_fit =

polyval (pl,x);

p2=polyfit (X,disp_Z_s2,1); %

y2_fit =

polyval (p2,x);

p3=polyfit(X,disp_Z_s3,1); %

y3_fit =

polyval (p3,x);

p4=polyfit(X,disp_Z_s4,1); %

y4_£fit =

polyval (p4,x);

pS=polyfit(X,disp_Z_s5,1); %

y5_fit =

polyval (p5,x);

linial

linial

linial

linial

linial

legend(’4’,73.5°,°37,72.5°,°2? ,71.5°);

% point to evaluate the

curve

curve

curve

curve

curve

33
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p6=polyfit(X,disp_Z_s6,1); % linial curve
y6_fit = polyval(p6,x);

figure ()

plot(x, yi1_fit , x, y2_fit , x, y3_fit, x, y4_fit, x, y5_fit, x,
y6_fit);

ylabel (’Displacements in z’);

xlabel (’x/c’);

title(’Displacement in different sections (with polyfit)’);

grid on;

leg = legend(’4’,’3.57,73’,72.52,72°,°1.57);

title(leg,’y(m) )

% Theta values for each section
theta = [atand(p1(1)); atand(p2(1l)); atand(p3(1)); atand(pd(1l));
atand (p5(1)); atand(p6(1))1];

% intersection of the torsion lines

% Alx+B1=A2x+B2

if cas==
f1 = @(x1) p6(1)*x1+p6(2)-p1(1)*x1-p1(2);
Xscl = fsolve(f1,1);

f2 = @(x2) p5(1)*x2+p5(2)-p2(1)*x2-p2(2);
Xsc2 = fsolve(£f2,1);

£f3 = @(x3) p3(1)*x3+p3(2)-p1(1)*x3-p1(2);
Xsc3 = fsolve(£f3,1);

f4 = 0(x4) pa(1)*x4+p4(2)-p2(1)*x4-p2(2);
Xscd4 = fsolve(f4d,1);

f5 = @(x5) p5(1)*x5+p5(2)-p3(1)*x5-p3(2);
Xschb = fsolve(£f5,1);

f6 = @0(x6) p6(1)*x6+p6(2)-pa(1)*x6-p4(2);
Xsc6 = fsolve(f6,1);

% Determinar shear center
Xsc_new=(Xscl+Xsc2+Xsc3+Xsc4+Xscb5+Xsc6)/6;

end
p = 0; % counter
X = X_nod(1:6,1); % position of the sensors on the chord

% find matrix for shear center displaments
for i = 1:6:31
P = p+l;

% Z displacement section i
disp_Z = rep_D(i:(i+5),6);

% h values at each section (using the shear center position)
disp_Z_pol = polyfit(X, disp_Z, 3);

34
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end

swit

h(p,1) =

ch cas
case 1 % when a

fun_theta =

necesita
d_theta =
dd_theta =

fun_h =
dd_h =

ddd_h =
case 2 7 when p

fun_theta =

necesita
d_theta =
dd_theta =

fun_h =

necesita
dd_h =
ddd_h =

Xsc_new=Xsc

polyval (disp_Z_pol, Xsc);

pplying pure torsion load

polyfit (Y, theta,1l); ’%se puede sacar mas si se
mayor derivada

fun_theta (1) ;

0; % null

polyfit(Y,h,2); % second grade
2xfun_h (1) ;
0;

ure bending load

polyfit (Y,theta,2); ’%se puede sacar mas si se
mayor derivada

fun_theta (2) ;

2« fun_theta (1) ;

polyfit(Y,h,3); %se puede sacar mas si se
mayor derivada

2xfun_h (2) ;

3*%2xfun_h (1) ;

)

end
end
function [F] = force_vector (L)
F = 0.5%xL*[0 1;
1 0;
L/6 0;
0 1;
1 0;
-L/6 0];
end
function [Tn,Tm,Xnod] = import_mesh()

addpath (genpath(’./Mesh’)); 7 open the main folder

naca0012 () ;

naca0012_profile();

Tm =

Tmat ;
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Tn = Tnod;
Xnod = xnod;
end

function [Ka_mat, e, RHO] = lift_line(b, Y_coord, x_sc, n_ely)

%% discretization (constant properties)

% AoA
alpha = 0; %geometric angle of attack in degrees
beta = O0; Ygeometric lateral angle (positive angle turns towards

positive y)

U_inf = 1;

U_inf_vect = [U_infx*cosd(alpha)*cosd(beta),U_inf*xsind(beta)*cosd(
alpha) ,U_inf*sind (alpha)]; Y free stream velocity components

RHO = 1;

Dot th T ToToToTototehhoToTo To To 7o %o %o % o o
hgeometry discretization

Tt Tttt tohhoh o To To %o %o %o o

TR = 1; % Tapper ratio

sweep = 0; % Sweep angle in degrees (
positive angles sweep backwards)

dihedral = 0; % dihedral angle in degrees (
positive angles tilt upwards)

twist = 0; % geometric twist in degrees

l_elem = b/n_ely; % span

rootC = (2*b~2/b)/(b*x(1+TR)) ; % root chord calculation

tipC = TR*rootC; % tip chord calculation

angle_TR = atand ((rootC-tipC)/(2%b)); 7% angulo de TR

meanAeroChord=2/3*rootC* (1+TR+TR"2) /(1+TR); 7 mean aerodynamic
chord calculation

S_tot (rootC+tipC) /2%b; % wing surface calculation

chord = zeros(n_ely,1);
for e = 1:n_ely
% chord of the airfoil/panel
chord(e) = rootC - (rootC-tipC)/(b/2)*abs(Y_coord(e));
% Surface of the element
S(e) = 1l_elem * chord(e);

end

% Normal vector of the element
n_vect = [sind(-alpha); 0; cosd(-alpha)l;
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%% Kutta c

% induced velocity at point x_coll due to a vortex segment between

corners
% of the H

% induced

A = zeros(
for i = 1:
for j

A

X_

% coordinates of 4-points HS (square)

X_
X_

X_
X_
X_
X_
v_
v

v_

v

% A is the aerodynamic influence coefficients matrix

A(

end
end

%% Aerodyn
S_mat = di

%% Element

%hh porque
%%%h es par

e = X_sc -
[f_vect] =
Q = f_vect
dof = 3;
I_mat = ze
n = 0;

for i = 1:

ondition for each element

S

velocities computation

n_ely,n_ely);
n_ely % FOR EACH CONTROL POINT
= 1:n_ely % EVERY VORTEX INFLUENCE

Coordinatres of collocation point
coll = [3/4xchord(j) Y_coord(i) 0];

inf = chord(i)*20 + chord (i) *0.25;
ac = 0.25*xchord(i);

HS_1

12 = vel_ind(x_HS_2, x_HS_1, x_coll);

_23 = vel_ind(x_HS_3, x_HS_2, x_coll);

34

= v_34 + v_23 + v_12;

i,j) = dot(V,n_vect);

amic influence coefficient

ag(8);
Force vector assembly

se anulan los demas componentes

[x_inf, Y_coord(j)-0.5%x1_elem,
HS_2 = [x_ac, Y_coord(j)-0.5%x1_elem,
HS_3 = [x_ac, Y_coord(j)+0.5%x1_elem,
HS_4 = [x_inf, Y_coord(j)+0.5%x1_elem,

vel_ind(x_HS_4, x_HS_3, x_coll);

0];
01;
0];
0];

a simplificar y solo nos importa torsion

x_ac;
force_vector(l_elem);
*[1; el;
ros(n_ely,(n_ely+1)*dof);

3:((n_ely)*3)

37
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n

n+

1;

I_mat(n,i:1:(i+5)) = [0.5 0 0 0.5 0 0O];
Q_mat(i:1:(i+5), n) = Q;

end

% quitamos los ceros de la matriz y nos quedamos solo con torsion
1);

U_mat = repmat([1;0;0;], n_ely+1,

% F(u) g_inf*x[Kal*{u}

Ka_mat = Q_mat * S_mat* inv(A) * I_mat;
F_mat = Ka_mat * U_mat;

% for steady problem --->

end

function [E2]=obtain_E(T, Q,

)

%from
S_11=
S_21=

%from
S_12=

d_theta_T,

applyinmg a pure torsional load (M=0)

d_theta_T/T;

dd_h_T/T;

h

es para pure torsional

applying a pure shear load

dd_theta_M/Q; % segunda der
S_22= - ddd_h_M/Q;

% uncoupled E
E = [ S_11 S_12
S_21 S_22];

E2 =

end

function [K,

inv (E) ;

E=inv (E) ;

GJ=E(1,1);
EI=E(2,2);

ACe)=

h

B(e)=

[1

O O O O O O

O O O O O O
O O O O

O O O O O O

% tercera

M]=obtain_K_M(L,

O O O O O

(@}
..

der

E,

Isc, m, d)

(K_fem - qg_inf*K_aero) (theta) =

dd_h_T, dd_theta_M,

podemos variar el criterio de L entre materiales

[o
0
0

0
12
6xL(e)

0
6*L (e)
4% (L(e)) "2

0
0
0

38

0
-12
-6*xL (e)

0;
6xL(e);
4% (L(e))"2;

Q

ddd_h_M
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0 O 0 0 0 0;
0 -12 -6*L (e) 0 12 -6*L (e) ;
0 6xL(e) 4x(L(e))"2 O -6xL(e) 4x(L(e))"2];

K(e)= (GJ/L(e)).*A(e)+(EI/(L(e)"~3)) .*B(e);

% Isc=;

% md=;

b m=;

C(e)= [Isc md 0O O 0 0;
md m O O 0 0;
0 0O 0 O 0 0;
0 0O O Isc md O;
0 0 O md m 0;
0 0O 0 O 0 0];

M(e)=(L(e)/2) .*%C(e);

end

function [K, M, GJ, EIl=obtain_K_M(span, n_ely, E, Isc, m_tot,

d)

l_elem = (span/n_ely); % define criteria to set the lenght of each

element

%%%% make sure that are positive values %%h%
GJ = abs(E(1,1));
EI abs(E(2,2));

A = [1
0
0
-1
0
0

.o

O O O O oo
O O O O OO
O O O O =
O O O O O o
O O O O O O
— .. -

% podemos variar el criterio de L entre materiales

B = [0 O 0 0 0 0;
0 12 6*%1_elem 0 -12 6x1_elem;
0 6x1_elem 4*%(1l_elem)~2 O -6x1_elem 4% (1l_elem) ~2;
0O O 0 0 0 0;
0 -12 -6*x1_elem 0 12 -6*x1_elem;
0 6x1_elem 4*x(1l_elem)”2 O -6*%x1_elem 4x(1_elem) ~2];

K = (GJ/1_elem)*A+(EI/(1l_elem~3))*B;

1 = (1l_elem/2);

M = [1*xIsc l*m_tot*d 0 O 0 0;
1*m_tot*d 1*m_tot 0O O 0 0;
0 0 0O O 0 0;
0 0 0 1x*xIsc 1*xm_tot*d O;
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w w w w
T

1 0 0 0 1*xm_tot*d 1l*m_tot 0;
0 0 0O O 0 0];
v end
1 function [I_sc, D, mass_tot] = section_properties(x, Tn, Tm, mat,
Xsc)
b
n_element = size(Tm,1);

5 I_sc = 0;
v for e = 1:n_element
% obtain the coordinates and material
0 % no estamos leyendo todas las coordenadas

L % las

_jC:,e) = x(Tn(e,:),1)’; ¥ four point of the square section
1 z_j(:,e) x(Tn(e,:) ,3)7;

™

6 rho(e) = mat(Tm(e,1)); 7% density for each element

8 % determine the centroid coordinates

x_cent (e)
| z_cent (e)

0.25 * sum(x_j(:,e)) ;
0.25 * sum(z_j(:,e)) ;

B % determine the area of each element

a = sqrt((x_j(l,e)-x_j(4,e)) "2+(z_j(l,e)-z_j(4,e))"2);
6 b = sqrt((x_j(2,e)-x_j(1,e)) 2+(z_j(2,e)-z_j(1,e)) " 2);
v c = sqrt((x_j(3,e)-x_j(2,e)) 2+(z_j(3,e)-z_j(2,e))"2);
3 d = sqrt((x_j(4,e)-x_j(3,e)) "2+(z_j(4,e)-z_j(3,e))"2);
ACe) = 0.5 * (a*b+cx*d);
L
D end
5
4 mass_tot = 0;
cent_mass = 0;
v for e = 1:n_element
8 %» total mass p.u.
mass_tot = rho(e)*A(e) + mass_tot;

—

% center of mass in x coordinates

o cent_mass = x_cent(e)*rho(e)*A(e) + cent_mass;
5
4y end
cent_mass = (1/mass_tot)*cent_mass;
T
g D = Xsc - cent_mass;

ot > > B = - - [ s - - w W w w w w w W w w N M ) [~} N [ [ [ [ [~
T T T

o % inertia about the shear center p.u. lenght
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for e = 1:n_element

I_sc = (x_cent(e)-Xsc) " 2xrho(e)*A(e)+I_sc;
end
end

function [fext, f_ref]=set_forces(cas, Xsc)

switch cas

case 1 7 ITERATION TO DETERMINE SHEAR CENTER
% set 2 forces that create a pure moment

Xal = 0.100; % Q1
Xa2 = 0.600; 7% Q2
Q1 = 5000;

Q2 = -5000;

fext = [Xal,
Xa2, B 5

(¢)]

18
f_ref = Q1;

case 2

% ITERATION TO DETERMINE PURE SHEAR LOAD

distance to LE
distance to LE

0o, 0, 0, Q1
0, 0, 0, Q2;

% set the bending force placed in the shear center

Xa = Xsc; % M dis
Xb = 0.2475; % di
Xc = 0.5948; % di
Xd = 1.0000; % di
M = 10000;

F = M*(Xa-Xb)/(Xd

fext = [0.2475,

0.5948, B
1, B
1
f_ref = M;
end
end
function V_jk = vel_ind(x

tance to LE

stance to Q eq
stance to F eq
stance to -F

-Xc);

_k, x_j, x_coll)

41
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x_coll - x_j;
x_coll - x_k;

b
[}

1 = x_k - x_j;

%circulacion unitaria
circ = 1;

V_jk = circ/(4*pi)*cross(r_j,r_k)/(norm(cross(r_j,r_k)) "2)*(dot (1,
r_j)/norm(r_j)-dot(l,r_k)/norm(r_k));

end
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1 Aim and scope

The aim of this project is to implement a set of MATLAB functions to perform different
kinds of aeroelastic analysis (e.g. assess divergence conditions, flutter study, unsteady

aerodynamics, etc.).

2 Requirements

A series of requirements are demanded for the implementation of the project [1]. They

can be classified in code or results depending on the demanded requirement.

2.1 Code requirements

4 main sections for the code have been demanded in order to solve the problem of joining

aerodynamics and structures.
e Structures

1. Use of 3D FEM code to obtain effective properties
2. MATLAB implementation of a beam’s FEM algorithm

e Aerodynamics

1. For steady aerodynamics: MATLAB implementation of lifting-line solution by

horseshoe elements

2. For unsteady aerodynamics: MATLAB implementation of Theodorsen’s model
e Coupling

1. MATLAB implementation of transfer matrices: structures output (displace-
ments vector) to aerodynamics input (angle of attack) and aerodynamics out-

put (lift distribution) to structures input (force vector)
e Solvers

1. Divergence speed 4+ modes

2. Flutter speed
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2.2 Results demanded

The outputs demanded for a clamped free-straight panel with a constant NACA0012

airfoil section are listed below:
e Divergence speed for different wing aspect ratios
e First modes associated to divergence conditions for different aspect ratios

e Stability plots for flutter

3 Theoretical background

In this section, the different theoretical methodologies [1] used for the code implemen-
tation will be commented. They will be based on the requirements given in Section
2.

3.1 FEM analysis
3.1.1 3D FEM analysis

The wing proposed, with a NACA0012 airfoil constant section is depicted in the Figure
1. As it can be noticed, different elements will be the constituents of this wing: skin, rear

spar, front spar and stringers.

Figure 1: Elements used for the structural modelisation of the wing [1]

Different properties (density, Young’s modulus and Poisson’s ratio) have been associated
to the structural elements, which have been taken into account for the resolution of the
problem. They are presented in the Figure 2. These material relations are already given

in the mesh functions.
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Material properties

Densit ot Poisson’
Material (ke rr:B); Modulus :atio 3
9 (GPa)
(1) Skin 2000 9 0.27
(2) Spars 1800 150 0.30
(3) Stringers 2300 70 0.35

Figure 2: Material properties structural modelisation of the wing [1]

The process used in this section is based on obtaining displacement measure readings by

introducing loads and displacement measure locations in the 3D FEM solver. The main

goal following this procedure is to get: Shear center position (zsc(y)), Torsional stiffness
(GJ(y)) and Bending stiffness (EI(y)).

Shear center position calculation: For the calculation of the shear center 4 points are

taken: 2 at the center of the front spar and rear spar, 1 at the leading edge and 1 at the

trailing edge. To find the shear center position, a moment is created by applying 2 forces

of the same magnitude in opposite directions, which causes a pure torsional moment at

the wing.

-1.5

><10'4]

1 1 1

0.1 02 03 04 05 06 07 08 09 1

Cc

Figure 3: Shear center determination
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The main objective is to look for a point where the z is 0, as the structure consists in
a symmetrical airfoil section. With 4 different points an interpolation can be done and
a point where the z is zero can be obtained, so the x position of this point is the shear

center position xgc. The result obtained is xgc =~ 0.37, as shown in Figure 3.

Torsional and bending stiffness: For the calculation of these 2 parameters an initial

hypothesis is taken to find the matrix E (2x2) of the next system:

T\ [GJ 0 e/ dy )
M| 0 EI[)dh/dy?

The assumptions taken are small displacements and deformations, which basically implies
small angles and linear elasticity. It also is considered that the effective response can
be described by elemental beam theory presented on the Equation 1. Since it is not
guaranteed that bending and torsion are structurally uncoupled, the following constitutive

relation is used to solve the problem instead, where the 2x2 matrix correspond to £~1.

g Su S| [T
o= @)
h So1 Sao M
where SH = gl/T, 521 = E”/Tl, 512 = y/M = —5”/@, 522 = E”/M = —EW/Q2
Firstly, is determined the 0 for points between 0.2b and 0.8b, where b is the span of the
wing, in order to avoid distortions on the averaged twist, and also considering different
stations of the chord of the airfoil. Those points are: 0, ¢/4, 0.6¢ and ¢. This derivative

has been obtained with the polyfit function for each section and applying also the next

expression:

6 = arctan(d) (3)

By doing this polyfit of first order (it would be equivalent to a linear regression of the
points), it i possible to find the slope of the interval, which is the mean variation of 6.
The second order derivative, is calculated through a second order polyfit. For the h, a
similar procedure is used, although for this case, a third order polyfit is necessary due to
the calculation of the Sy term. The procedure is also repeated for each section, just as
the 6 case. Nevertheless, the forces need a special treatment commented below.

The forces applied for the torsional case are applied at the center of the front spar and
rear spar (0.25¢ and 0.6¢) with a value of 100N in opposite senses.

In order to apply a shear load in the shear center, it is needed the treatment of replacing

this load by applying it at a different point and adding a compensating torque, since the

16811 and So; from applying a torsional load (M=0)
2815 and Saofrom applying a pure shear load (T=0, M’'=-Q)
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shear center point is a non-existing node in the mesh used. The input value of ) has
been again of 100N.

Figure 4: Replacing of a shear load at a different point adding a compensating torque

Finally, once the values of Si1, S12, So1 and S are obtained, it is able to determine the

elasticity matrix by just doing the inverse. The resultant matrix E has been:

0 EI| |12881.944 25089.088

GJ 0| [874579.503 462.546 n

As it can be noticed, the values on the diagonal are significantly higher than the non-
diagonal terms, and although not being 0, the assumption of developing a correct process

up to this point is taken.

3.1.2 2D FEM analysis

For the 2D FEM analysis, the nodal coordinates, nodal connectivities, material properties
and material connectivities matrixes are needed for the treatment of the problem in
elements. These matrixes have been supplied by the professor. For the section properties

calculation, the process followed has basically been the one presented in the slides.

1. The coordinates and materials for each element composed of 4 nodes are obtained.

o [ ®

2. Determination of the centroid coordinates is done as an average of the position of

the 4 nodes: ,

1
el __ [e]
2l == E T; (6)

=1

3. The area of each element is determined, again as an average of the rectangular area
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formed by each pair of nodes (1-4,1-2) and (3-2,3-4):

a= x[f] — a:z[f], b= :z:[;} — :1:[16], c= xﬁf} — :L‘[;] d= xé[f] — xﬁf} (7)

1
A[e]:§(axb+cxd) (8)

4. The mass per unit length is calculated by using the element area, as well as the

density as:

m = Z plel Alel (9)
5. The center of mass is obtained by using:

1
_ 1 (€] yle] gl 10
Tem = — § z%p (10)

6. Finally, the inertia about the shear center per unit length is calculated as:

ISC = Z(m[e} — xsc)Qp[e}A[e] (11)

e

3.1.3 1D Beam analysis

For the 1D Beam analysis, taking an element i formed by 2 nodes, the nodal coordinates,
nodal connectivities and length per element can be determined by using the following

procedure:

e Nodal coordinates:

[y’ = y® (12)
e Nodal connectivities:
[T, =4, [T,]02) =i 41 (13)
e Length:
[0 = G+ () (14)

Computation of element matrices:

Once these lengths are calculated, computation of the stiffness and mass matrix are
possible as they are basically dependant on Torsional and bending stiffness obtained in
the 3D analysis, and the Inertia about the shear center and masses obtained in the 2D

analysis.
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Figure 5: Element matrices computation [1]

Please, notice that the diagonal terms of the stiffness second matrix should be 12 instead

of ET and -12 for the non-diagonal terms which contain E1T.

Assembly of matrices: Global matrices calculation:

Once the element matrices [K1] and [M11] are computed, their assembly is done initial-
izing global matrices with 3 degrees of freedom (DoFS) per node, being the total number
of DoFs, N = 3(n+1) with 0, h,y == h’ as DoFs. Then, using several for loops (element,

element node twice, degree of freedom twice), global matrices are computed.

3.2 Aerodynamics

For the aerodynamics section, the Lifting-line surface analysis is considered in order to
analyse the problem. This analysis consists on dividing the wing in elements, each one
as a horseshoe element that makes influence on the other ones for the static part of the
code.

On the other hand, for the dynamic part of the code, the implementation of Theodorsen’s

model is done.
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3.2.1 Steady Aerodynamics: Lifting-line surface analysis

The discretization is done by assigning a surface area for each element obtained as:
Sl — gl . (15)

A normal vector is associated to each element in a constant direction in z of n = [0, 0, 1].

Finally, the collocation point is computed at 3¢/4 of each element.

Figure 6: Horseshoe element discretization [1]

Taking these indications into consideration, it is possible to calculate the following system

of equations:

[A][l] = —Uxle]
An A o A i olll
Agy Asy ... Ay, | | TH 2]
21 22 2 - « (16)
A Apna . Ann rnl Oé[n}

where [A] is the aerodynamic influence coefficients matrix, T' is the circulation supposed
as 1 initially for the system resolution, U, is an unknown and the « is the angle of attack

that will be later commented. The steps taken to calculate each item are done as follows:
1. Induced velocity at point x with vorticity I'l!! = 1 calculation:

[4] It T; X Tk l[ﬂ Ty l[i] Tk
V., = _ .
ATy xS T Tk

T =T — 19 = —2;  (17)

) J
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2. Aerodynamic influence coefficients matrix [A] calculation:
Aij = (o (') + gy (o) + e (al) - (18)

3. Surface: With the surface calculation for each element presented in the Equation
15, it is possible to create a diagonal matrix with the surfaces lcoated in the diagonal
of a matrix S:
Shl 0
[S] = (19)
0 Slnl

4. Angle of attack [a] calculation: In order to determine an expression for the
angle of attack, the aerodynamic model considers an interpolation matrix between
« and u. Then, for this specific probem:

o o )
o gl — L _
ol = =211 0 0 10 0 Lyp=|1 1] {u(“‘l) (20)

R+

\7(i+1) )

then, applying the relation for n angles of attack:

4 u(l) 3\

alll I I 0 u®

12 0 I I 0 0 )
{af=3% 1= =l e

o 0 0 0 I I u™

\u(n+1))

3.2.2 Unsteady aerodynamics: Theodorsen’s model

The methodology used to analyse the flutter is the Theodorsen model [2] [3], developed
in 1935. Before starting the resolution of the problem, a series of parameters definitions

are needed:

I
Q
<
>~
3
3

b=c/2 a=

10
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Where the pq, is taken as 1.225kg/m3.
It is also needed the Theodorsen’s function, which is a transfer function that accounts

for attenuation by the wake vorticity. The approximation used is in the form of: C'(k) =
F(k)+iG(k).

Clk) = 0.5k* +0.0765k% + 1.8632 - 10~* L —0.1080k — 8.8374 - 10~k (23)
© k*+0.0921%2 + 1.8632 - 104 k* 4+ 0.0921%2 + 1.8632 - 10—
Where k is defined as the reduced frequency k = %, which contains two unknowns of

the problem.

As in the case of steady aerodynamics, a system coupling is needed through the defined
matrices given in Section 3.3. However, in this case it is also required an extra column
of zeros to adjust the dimensions of the problem.

For the definition of the system of equations to solve, it is also needed the A matrices

definitions given by:

[AR(k)] _ 2 1/8; a? Cll EG) 26;2(1—_11/2 2a2—i—1 F(k) 1+22a 8]
[An(k)] = 2 [31] + kG0 [€] + k) [ 7] (24)

[A,(k)} L [a —11/2 8] P 26;1__11/2 2a2—i—1 G 1+22a 8]
[A,(zf)} — k {c} — kF(k) [c] +G(k) [K} (25)

Once this procedure is done, an adjustment on the parameters of the mass and stiffness
matrices is also required, so the dimensions of the different elements are consistent. The

steady matrices K and M are adjusted® as a consequence as:

- o
A
[K] = (27)

Where m stands for the total mass per unit length. Finally, having the non-dimensionalised

matrices, the system obtained in function of the defined parameters is the following:

3Tt has also been necessary to add a diagonal term close to 0 to allow the computation of the K matrix

11
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([k]_l (1] + [f(]_l (2] +i= (6] = (PR) +iGh) []) + k2 (R ) +i6m) [K] - a0 {2} = {0} (28)

or, re-expressing the left-hand side term with the matrix D:

(D] =200 {7} = {o} (29)

At this point, it is possible to impose the flutter condition, so the unknowns of the
problem can be determined following the procedure which is going to be explained in the
Section 3.4.2.

3.3 Systems coupling
3.3.1 Force vector assembly

Once the aerodynamic part is determined, it is possible to assembly the element force
vector through the definition of a [Q] matrix formed by Q[f] and Q[Qi] as:

1| ¢ 1| ¢
V= 3| 1 Q) = 5] 1 (30)
1/6 —1/6
oM o .. 0]
Q' Q) .. 0
(2]
110 0
Q=3 : (31)
0 0 QU
[0 0 Q]
Then, the element force assembly matrix is calculated as:
1 _
[F()] = =5 U [QUISIAT [1][u] = goo[ K] (32)

a8 oo = 3PucU% and [Ko| = [Q)[S][A] ™ [I][u].

3.4 Resolution of the system

Once the aerodynamic matrix is obtained, the boundary conditions to the total stiff-

ness matrix are applied, basically meaning that the torsion angle at the fixed extreme

12
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(corresponding to the first term of the matrix) is 0. The aerodynamic matrix, is also
adjusted by adding to it a diagonal matrix with non-zero values but very close to it, in
order to avoid obtaining discontinuities when solving the system. The matrices are also
non-dimensionalised with the dynamic pressure to avoid additional terms multiplying the

system.

3.4.1 Divergence condition

To obtain the divergence condition [4] [5], what is wanted is to equalize to zero the

eigenvalues of the system. For the problem it is obtained that:

] o + [ =0 2

By multiplying both sides of the equation with the [K 1 term, the system can be re-

structured as:

(557 ] #a [ (o} = o

Then, the divergence condition is determined by setting:
det( [f(;l] {K} n M) {u} —0 (35)
taking the divergence dynamic pressure as the minimum eigenvalue obtained applying

the previous condition. Finally, once the dynamic pressure is obtained, the speed can be

directly calculated as follows:

2-qp- ana
P

a2 _GJ
4b? ceCy o

the divergence dynamic pressure.

corresponds to the analytical solution used to non-dimensionalise

where 4Danalyt =

3.4.2 Flutter condition

Starting from the Equation 29, the flutter condition [2] [3] can be obtained in terms of

Ar and kp, which are defined as follows:

2 2 2
w wH — W 2WpWw
_ Wp  Wp T LWRWT
)\F—F— w2 +1 w2 (37)
0 9 0

wa . wa ,(J.J[b

_ Wrb Wb Wb 38
Uy U U (38)

13
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The objective is to find the unstability condition, which is produced when w; goes from
positive to negative values. In the limit, w; = 0, which means Ag > 0 and A\; = 0. Then,
to obtain the flutter condition it is necessary to find the kr € R for which A\p > 0 € R
taking into account the Equation 29:

det([ D(kr)| — Ar[1]) =0 (39)

Finally, for each Ar obtained, it can be calculated the velocity and the frequency.

4 Results

This section shows the results obtained with the code in order to verify the procedure,

and the final results demanded as outputs of the program.

4.1 Processing results

x10 Shear center position

Z position

0 0.1 02 03 04 05 06 07 08 09 1
x/C

Figure 7: Shear center position

By applying a pure torsional load on the wing, the deviation in height of the points along
the chord can be obtained. With this, the point with 0 deviation is the shear center. (See
Section 3.1.1 for further details.

14
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x10® 0 along span for Shear Load

16

Figure 8: 6 along the span

In the Figure 8, it can be seen the tendency of the # angle along the span when the
system is under a pure shear load.

It is believed that the tendency of the system should remain constant, but due to the
structure nature, when approaching the tip of the wing, the # angle increases, creating a
bigger effect as a consequence. However, notice that the values are of orders that could
be consider close to 0, so the variations between the points are very close between them.
For further details about the forces applied to achieve this tendency, see further details

in Section 3.1.1.
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10 X 103 Z variation along span for Shear Load
1 |-
0.8
c (0]
i)
= 06
g
N O
0.4 r
O
0.2 ¢}
O 1 1 1 1
1 1.5 2 25 3
y

Figure 9: 7Z position along the span

As it can be seen, the Z position of the section increases with the span. As the main
objective is to see the overall tendency, the tip (where the forces are being applied) and

the joint (where the wing is fixed), are not shown, since at these points the variation

doesn’t follow the same tendency.

Figure 10: Shear load case

This Figure 10 shows a representation of the system under shear load conditions in order

to observe the tendency of it.
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x10* 0 along span for Torsional Load

Figure 11: 6 along the span

In the Figure 11, it can be seen the tendency of the # angle along the span when the
system is under a pure torsional load.

The angle 0 should have a tendency to increase along the span, which it does, basically
meaning that we will observe bigger angles at the tip, whereas for the sections near to
the clamped part, the angle will have values closer to 0.

As it can be seen in the Figure 12, the Z position of the section decreases with the span.
As the main objective is to see the overall tendency, the tip (where the forces are being
applied) and the joint (where the wing is fixed), are not shown, since at these points the
variation doesn’t follow the same tendency. This Z variation is not supposed to happen,
since the overall load has value 0 in the Z direction.

17

159



220351 - Advanced Aeroelasticity

-051

-1.5

Z variation

-2.5

-3.5

The Figure 13 shows a representation of the system under torsional load conditions in
order to observe the tendency of it. Notice that the effect in the free-tip is higher than

the clamped one.

«108 Z variation along span for Torsional Load
I o
I o
I o)
o)
o)
1.5 2 25 3 3.5
y

Figure 12: Z position along the span

Figure 13: Torsional load case
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4.2 Final results

The results obtained developing the methodologies exposed in the Section 3 are shown

below.

4.2.1 First modes associated to divergence conditions for different AR

The first modes associated to divergence conditions for different Aspect Ratios are shown
in the Figures below. The values chosen for the aspect ratio will vary between 1 and 10
being the first 5 modes shown for each configuration.

02 Elastic Twist modes for AR=1

0.15

0.1

0.05

Eigenvector
o
o
(6]

_0.3 1 1 1 1 1 1 1 1 1
0 0.1 02 03 04 05 06 07 08 09 1

y/b

Figure 14: First modes for Aspect Ratio 1
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02 Elastic Twist modes for AR=2

0.15

0.1

0.05

Eigenvector

-0.05

1 1 1 1 1 1
04 05 06 07 08 09 1
y/b

Figure 15: First modes for Aspect Ratio 2

042 Elastic Twist modes for AR=3

0.1

0.08

0.06

0.04

0.02

Eigenvector

-0.02

-0.04

-0.06

-0.08 I I I I I 1 I I T
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

y/b

Figure 16: First modes for Aspect Ratio 3
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Eigenvector

Eigenvector
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Elastic Twist modes for AR=4
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0.1 02 03 04 05 06 07 08 09 1
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Figure 17: First modes for Aspect Ratio 4

Elastic Twist modes for AR=5

1 1 1 1 1 1 1 1 Il E—

0.1 02 03 0.4 0.5 0.6 0.7 0.8 0.9 1
y/b

Figure 18: First modes for Aspect Ratio 5
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Elastic Twist modes for AR=6
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Eigenvector
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Figure 19: First modes for Aspect Ratio 6

Elastic Twist modes for AR=7
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Figure 20: First modes for Aspect Ratio 7
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Elastic Twist modes for AR=8
0.02 T T T T T T T T T
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Figure 21: First modes for Aspect Ratio 8

Elastic Twist modes for AR=9
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Figure 22: First modes for Aspect Ratio 9
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Elastic Twist modes for AR=10
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Figure 23: First modes for Aspect Ratio 10

As it can have been observed in the previous Figures, the modes associated to each Aspect
Ratio vary significantly.

Taking into account the definition of Aspect Ratio, AR = % = 1% = LC’ for this case. So,
for lower values of AR, we are basically considering a square-wing with the highest values
observed for the eigenvector than any other case. On the contrary, while making the
wing more slender (increasing AR), a reduction of these eigenvectors values is observed,
which it is believed it could be associated to the speed reduction necessary to achieve the
divergence condition. It would also be relevant to comment the fact that a filter has been

done for each case, since the order of the modes varies depending on the case analysed.
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4.2.2 Divergence speed for different Aspect Ratios

The Figure 24 shows the tendency of the divergence speed when changing the Aspect
Ratio.

Divergence speed
7000 T 9 ‘p

6000

5000

4000

Speed

3000

2000

1000

AR

Figure 24: Divergence speed (m/s) for different wing Aspect Ratios

As it can be seen, when increasing the Aspect Ratio of the wing, the divergence speed
decreases, approaching the 0 value as the Aspect Ratio increases. This result shows that,
when the span is large enough, any variation in the wing instantly creates the divergence
condition, and thus, the wing would be certainly uncontrollable.

For the most critical situation it would be inside the ranges of a typical commercial
aircraft. For instance, in the case of an Airbus A320, which has an AR of approximately
10.3, the cruise speed is of the 830km/h order, being below the 1000km/h where the
divergence phenomena would appear. However, this does not always happen. Then, it
would be interesting to find tools to avoid this kind of condition as, generally, divergence
is a non-desired effect. Making stiffer structural elements would be a solution, although
this stiffness increase it is usually achieved in expenses of having more weight on the
aircraft. So, it’s always a trade-off depending on the application and ranges of operation

of the aircraft.
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4.2.3 Stability plots for flutter

The calculation of the Flutter speed is developed by using the Theodorsen’s model 3.2.2
and applying the resolution explained in 3.4.2. Taking this into account, the multiple
solutions that give the lowest velocity are shown in the Figure 25.

Imaginary A
500 r g y

-500

-1000

-1500

Imaginary \ part

-2000

-2500

_3000 | | | | | | | | | |

Figure 25: Imaginary parts of A vs &

By forcing the imaginary part of A to be 0, the flutter speed is obtained: 218.7 m/s.
At this velocity, the system will make a transition from stability to instability achieving
the aforementioned flutter. As it can be seen, the order calculated is similar to the one
obtained for the divergence for relatively slender wings.

In the Figure 26, the velocity vs k evolution is represented. Following the Equation 38, it

can be seen how the tendency of increasing x while decreasing the speed is accomplished.
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Flutter speed
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Figure 26: Velocity (m/s) vs k

5 Conclusions

Once the results are obtained, some conclusions can be extracted about the project. The
results obtained are generally outputs expected from what the theory and problems given
in class have presented. The orders for the velocities and the tendencies achieved seem to
have logical values. All the demanded results presented in the requirements are obtained
and justified accomplishing with the aim and scope of the project. The code obtained is
an interesting tool that could be used to verify and test future developments, based on
the concepts presented here: basically divergence and flutter speed for both steady and
unsteady aerodynamics. Some improvements for the development could pass from work-
ing with more sophisticated aecrodynamic methods such as Vortex Lattice, where instead
of using only one horseshoe vortex per wing, as in LLT, it uses a lattice of horseshoe vor-
tices. For the dynamic part it could also be interesting to consider other methodologies,
apart from the Theodorsen’s one presented taking care of the computational cost they
would require. Additional considerations on the structural part could also be considered,
for instance improving the mesh input of the program with a more detailed structure,

adding more complex or detailed elements to the mesh, among others.
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1. Introduction

The aeroelasticity phenomenon is a critical design point in different industries. Nowadays, it is
not just a phenomenon of interest for increasing the safety in the aerospace industry, but it is
also critical for designing more efficient wind turbines, or even it is applied in the motorsport
industry for achieving better aerodynamic performance of the race cars.

This phenomenon is based on a coupling between the structural deformation of certain
aerodynamic surfaces and its effects in the aerodynamic forces. Achieving a feedback loop that
may blow the stability of the system depending on the design and the boundary conditions.

It can be studied using different approach, on one hand, it is possible to build a model with
certain mechanical and aerodynamics configuration a test it on a wind tunnel. This may resultin
highly accurate results of certain geometry, but it will not be very cost-effective, as many models
might be manufactured to study different configurations and their effects.

On the other hand, it is possible to model this event using different degrees of complexity. The
most accurate solution may be using a complete CFD of the element with a Finite Element
structure that is deformed dynamically under certain conditions. As in the previous case, this
will result in accurate solution of the problem, but it will be high computational and engineering
expensive. There exist simplified models that are suitable for understanding the causes and the
effects of different parameters, concretely they can be divided into two parts, the quasi-static
model, the structure is modelled using static beam elements and the aerodynamic is modelled
using a horseshoe potential model. The dynamic model is based on dynamic beam elements
structural modelling and the aerodynamics are modelled using the Theodorsen’s aerodynamics
model.

This study proposes a virtual testing environment based on a simplified beam modelling for the
structural part, whose properties will be extracted from a detailed finite element analysis of the
whole wing structure. And the aerodynamics will be modelled using the horseshoe method for
analysing the divergence condition and the Theodorsen’s aerodynamic model for analysing the
flutter stability condition.
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2. Wing model

In this section, the model is described in detail. Concretely it will be divided in two sections the
structural modelling and the aerodynamic modelling.

2.1.  Structural model
The structure will be modelled using the Finite Element Method with hexahedral elements. Each
part of the wing will be modelled using different properties.

Once the structure is completely defined, it will be tested under different load cases. The first
load case objective is determining the shear centre of the structure. To find this point the
definition of the shear centre will be used: the shear centre is the point where a shear force does
not cause twisting deformation. It is necessary to determine a feasible way to place a force at
different chord locations, to do so an equivalent force and moment method will be sued, as
described in figure 1.

\Z Q A Q

A
A

\NZ
N\

xSC

B
L

A

Figure 1: Equivalent shear force and position.

The equation that determines the position of the equivalent shear force is:
_ Qd'+M_ Qd' + Fh'
Q Q

The solver that will be used is based on a Bolzano algorithm, supposing that the shear centre is
between the chord of the wing.

xS C
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After finding the shear centre, two load cases will be used to determine the bending and torsion
stiffness of the beam. To do so a polynomial fitting of the central nodes’ deformation will be
used as shown in figure 2.

Fixed displacements at the root

Loads applied on the tip

Figure 2: Deformation fitting using 1D beam elements. Torsion case.

The equations that determine the equivalent beam properties, supposing that there is not
twisting bending coupling, are:

o°h a6
= ay_ —. 0y
Fl=--0- G=7

Once the equivalent beam structural properties are obtained, the inertial properties must be
determined, to do so the polar inertia of the section, the mass per unit length and the centre of
gravity position must be obtained. They will be obtained by integrating the mass of each element
using the following expressions:

[e] le] 4le]
x A _
m= Zp[e]A[e]; Xem = Zp—; Iem = 2 (Xem — x[e]) N2 p[e]A[e]

Finally, those magnitudes can be scaled by using the chord size at each section using the
following expressions:

] 4

le lel\* e\ [e]
_ C — c c — c
Ellel=FET-(—) ; g/l =G] - |— ) ; mlel=m-[—] ; el -~ ([ —
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And then it is possible to obtain the elemental matrices as:

100 -1 0 0 0 0 0 0o 0 0
J;) 0 o 0 0 o 0 12 e6lld o —12 el
el =0 0 0 o o of, Er' o el 4" 0 —ellel 41’
(K1 =7 10 0 +1 0 oftgEnslo o 0 0 0 0
0 00 0 0 O 0 —12 -e6lel 0 12 —6lle]
0 00 0 00 0 6llel a(ile)® o —ellel a(ile))?]
I +md? md 0 0 0 0
Jle md m 0 0 0 0
le] — - 0 0 O 0 0 0], _ _
M1 =3 0 0 0 I, +md? md of 9% ¥em
0 0 O md m 0
0 0 0 0 0 0

2.2. Aerodynamic model

Two different aerodynamic models will be used depending on the type of analysis that will be
performed, if the analysis objective is determining the divergence modes the horseshoe method
will be used. Whereas, if the analysis objective is determining the flutter condition, the
Theodorsen’s aerodynamic model will be used.

2.2.1. Horseshoe method

The horseshoe method is based on the extension of the discrete vortex for a 2D airfoil analysis,
it is based on constant vortex lines that have an attach part at the aerodynamic centre of each
section and two unattached vortex that are parallel to the free stream velocity. As in the 2D
airfoil analysis each section has a collocation point where the flow through the surface must be
zero obtaining the following system of equations:

n
Z (171[]2] + 172[]3] + UBE{I-]) |x=x[i] +Us |- n[i] =0
j=1

Which can be written in matrix form:
[ANT} = —Us{a}
Then the lift contribution of each element is:
L = pe U STITH — [L] = —2 - oo [S][A]*{a}
Where S is a diagonal matrix with the aerodynamic surface of each element.

And the torsional moment of each element is:

[Msc] = [L]d
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2.2.2. Theodorsen method

The Theodorsen method is based on a linear approximation of the 2D airfoil wake dynamics
based on the coupling of the different degrees of freedom of the model and the Theodorsen’s
transfer function that accounts the attenuation by the wake vorticity.

. 1
1 = 7p  b2(Us8 — bab — h) + 27p o U b C (k) (UOOB +b (E - a) 0 — h)
1 1
Mo = —npoob3(Uoo(§—a>9+b(§+a2)9+ah)+

1 1
+27p oo U ob%C (k) (a + E) (UOOH +b (E - a) 0 — h)

Where C(k) is the Theodorsen transfer function and k is the reduced frequency:

oy 1 0165 0335  wb
() = T _00455° 03’ “T,
K K

The Theodorsen function can be written in complex form as:

0.5k* + 0.0765k2 + 1.8632 - 10~* c00 - —0.1080k3 — 8.8374- 104k
K% +0.0921x2 + 1.8632-10-% ° VYT 1 1 0.0921x2 + 1.8632 - 10—+

F(k) =

Finally, it is possible to write the Theodorsen aerodynamic model in matrix form for each
element as:

[1 1
e 2§+a2 a 0 2az—5 2a+1 0 1+2a 0 0
[Ar(0)] " =« . Lo + kG (k) a1 ) 0 + F (k) S 8 8
0 0 0 0 0 0
1 , 1
o |am5 000 20 ~7 2a+1 0 1+2a 0 0
[A,(K)] =Kl 4 0 0 — KkF (k) -1 5 0 + G(k) (2) 8 8
0 0 0 0 0 0
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2.3. Discretization
Once the elemental matrices have been defined, it is time to discretize de problem using the
following method. A staggered mesh will be used using the structural nodes as center of the

aerodynamic element as shown in the following figure, two extra nodes will be added at the
fuselage and at the wing tip.

Figure 3: Wing discretization using staggered mesh. In green: Elastic axis and structural nodes
position. In blue: horseshoes of each aerodynamic element. In grey: rectangular wing
representation. In black: Fuselage boundary condition (it can be considered as a symmetry
plane).

As it can be seen, at wing tip and at the symmetry plane, an extra aerodynamic element with
null effective surface must be added to have the same number of nodes.

2.3.1. Aerodynamic symmetry condition
It is possible to account for the aerodynamic symmetry condition by creating a fictitious
symmetric aerodynamic mesh that will be reduced using the symmetry conditions as:

- Nelem_'_i,Nelem_'_j Nelem_‘_i,Nelem_j_‘_l
F(}’) = F(_}’) - KaeTO_ElJ,/jT]n = K(Eer?) z ] + Kc[leri 2 ]; l;] = 1: Nelem

If K4er0iS @ 4x4 matrix, then Kaemsym will be 2x2 matrix with the following values:

Ki1 Kz Kiz Ky

_|K21 Kaz Kz Kis
Kaero = K31 K3z K3z Kzs ﬁKaemSym

K41 Kiz Kyz Ky

_ [K33 + K3y Kzu+ K31]
Kys + K4y Kyg + Kyq
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2.4. Divergence
The divergence condition is a quasi-static aero-elastic phenomenon that occurs when the
following conditions is satisfied:

([Kaero]_l[K] - A){x} =0

In our problem the inverse of the aerodynamic matrix does not exist as there are rows and
columns with null values, then the inverse problem must be solved:

(1K1 Raerol ~ 3) G} = 0

The main disadvantage of solving the inverse problem is that there will appear other eigenvalues
associated to the diagonalization of the stiffness matrix that are not related with the divergence
problem, that is caused by a torsion in the wing.

2.5.  Flutter

The flutter condition is a dynamic aero-elastic phenomenon that occurs when the following
conditions is satisfied:

2 1 N R
(‘:rp:)Tuzo[M] + opepz K1~ ([4x00] + i[/h@c)])) (x} = {0)

Which can be converted to an eigenvalue problem using the adimensionalization as:

(IR ([#] + (=2 - D ([ARG0)] + [A()])) = 2) (x} = 0

Where the solutions of this eigenvalue problem are:

In fact, the flutter condition occurs when:

min(UOO >0&Im(w = 0))
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3. Implementation

In this section an analysis of different parameters will be assess. Starting with the divergence
condition and finally the flutter phenomena.

3.1. Divergence condition

In this section a detailed analysis of the divergence phenomena will be done, the first step will
be analysing the divergence eigenmodes that appear in a simple rectangular wing. Then, a
detailed analysis on the wing aspect ratio will be done. To continue, the swept wing angle effect
will be analysed. Finally, a trapezoidal wing will be simulated.

3.1.1. Torsion eigenmodes

As the aerodynamic matrices are only dependent on the torsion angle, the only eigenmodes that
will be analysed are the ones that have a non-null distribution of torsion angles. However, when
solving the eigenvalues problem other bending eigenmodes will appear they are not related with
the divergence effect. Concretely the case that will be analysed is a constant chord wing with an
aspect ratio of five.

0.25
0.2
0.15
0.1
. 1:Uy=1757.7 m/s
g 0.05
k3] 2:U,=4903.6 m/s
o
Z 0 3:U,=8642.1m/s
_‘]9’-, 4:U,=12932m/s
w -0.05 5: U, = 17664 m's
-01 1
-015 |
02|
-0.25 ; ! :
0 0.2 0.4 0.6 0.8 1
y/b

Figure 4: Divergent conditions first 5% torsion eigenmodes, AR=5.

With this wing configuration, it can be seen that the first possible eigenmode correspond to the
second wing mode, as it has one relative maximum and minimum.
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3.1.2. Aspect ratio sensitivity

After a detailed overview of the shape of the eigenmodes, the wing aspect ratio will be analysed
making a sweep through a range between one and twenty.

Figure 5: Divergence speed of the first divergence mode aspect ratio sensitivity.

It can be seen a tooth shaped curve; this is caused by making infeasible the first modes when
increasing the aspect ratio as shown in the figure x. The first feasible eigen mode of the first
curve is a single relative maximum, while in the second tooth it is a relative minimum and a
relative maximum, finally the last tooth is a 3-relative maximum-minimum shape.

Figure 6: First divergence eigen modes at different aspect ratios.
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3.1.3. Swept wing

A similar study has been performed with a swept wing. A similar effect is seen when increasing

the swept angle, this may be caused by an increment of the structural elements length a thus
reducing the structural stiffness.

Figure 7: Swept wing first mode divergence speed. Wing AR of 10.
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3.1.4. Trapezoidal wing

The last wing shape analysis that has been performed is a modification of the wing tip and root
chords while maintaining the aspect ratio constant (AR=10) and the mean aerodynamic chord
constant (Cy,qc = 1). The obtained results are shown in the following figures.

Figure 8: Divergence speed for different wing tip chord ratios. AR=10.

It can be seen that there exists an optimal wing tip ratio when the divergence speed is maximum
in the range between one and 4.5. After that point, a change in the first feasible divergence
mode is achieved increasing the divergence speed.
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Figure 9: Divergence torsion modes for different wing tip chord ratios. AR=10.
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3.2. Flutter condition

The flutter problem will be solved iteratively using a range of k between 103 and 10! obtaining
the following figure.

=

2 100}

-100
107

Figure 10: Flutter map for a 7 elements mesh and wing AR of 10.

As it can be seen the modes are not perfectly ordered due to the ordering factor used, the
freestream velocity. In this graph, it can be seen that there are a few modes that are always
stable, the imaginary component of the w is always positive, and some others that for big k and
low speed they are stable and at certain point this stability is lost reaching negative values.
Concretely, the flutter condition will occur when the first mode crosses the x axis line.

Figure 11: Flutter condition for a 7-element mesh and a wing aspect ratio of 10.
Flutter speed of: Uoof = 241.07 m/s, and k = 0.3424.
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4. Conclusions

During this study, it has been proven the feasibility of studying the divergence and flutter
phenomena using simple structural and aerodynamic models while capturing the principal
causes and effects of those phenomena and the key design parameters.

The self-implemented MATLAB software has shown a good performance on modelling
aeroelastic cases.

It has been seen that the divergence is very dependent on the geometric parameters of the
wing, modifying the apparition of the first’s divergence modes. Also, the flutter phenomenon
has been more difficult to assess due to the randomness of the apparition of the modes, making
difficult the tracking of the imaginary part of the flutter frequency.
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