General description

Name of the course: Non destructive Testing in Mechanical Engineering
Department: Mechanical Engineering (EM)
Strength of Materials and Structural Engineering (RMEE)
ECTS: 6 ETS
Degree: MASTER’S DEGREE IN RESEARCH IN MECHANICAL ENGINEERING
Level:
Language: English
Code: 295803
Type: Elective

Lecturers
Main teacher: Vega Perez Gracia (Strength of Materials and Structural Engineering) and Eva Martinez Gonzalez (Mechanical Engineering)

Others: -

General learning objectives of the course

The main objective of the course is providing to the professional engineer a global vision of the most common NDT methods in the industry and research, applied during the manufacturing or along the service life of the structures. At the end of the course the students will know different techniques, their applications and limits and they also will know how to handle several equipment and the interpretation of the obtained data.

Competences

<table>
<thead>
<tr>
<th>Specific competencies</th>
<th>To apply knowledge of mathematics, physics, chemistry, biology and other natural sciences, obtained through study, experience and practice, with critical reasoning, to establish economically viable solutions to technical problems (CG1 and CG3). Conceptualize engineering models, apply innovative methods in the resolution of problems and adequate computer applications, for the design, simulation, optimization and control of processes and systems. Other specific competencies are: Requirements, restrictions and research objectives in the aforementioned topics and, calculation and experimental characterization tools suitable for each of the aforementioned topics</th>
</tr>
</thead>
</table>
| Generic competencies | CG4 - Research, develop and innovate in the field of Mechanical Engineering.
CG5 - Strategic planning and application of NDT tecnologies in construction, production, quality and environmental management systems. |

CG6 - Technically and economically manage projects, facilities, plants, companies and technology centers related to the design and manufacture of systems and elements of Mechanical Engineering

Credits: total hours of student work

<table>
<thead>
<tr>
<th>Directed learning</th>
<th>Large Group (G)</th>
<th>30</th>
<th>20%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Medium Group (M)</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td>Small Group (S)</td>
<td>24</td>
<td>16%</td>
</tr>
<tr>
<td>Autonomous learning</td>
<td></td>
<td>96</td>
<td>64%</td>
</tr>
</tbody>
</table>

Modules

Module 1: Introduction to NDT

Dedication: 8 hours

- Large group: 2 hours
- Small group: 2 hours
- Autonomous learning: 6 hours

Description

- Origin
- Criteria in the NDT inspection
- Visual inspection

**Related activities ()* **

- Theory classes

Module 2: Thermography

Dedication: 10 hours

- Large group: 2 hours
- Small group: 2 hours
- Autonomous learning: 6 hours

Description

- Physical principles
- Applications and limits
- Methodology
- Data interpretation

**Related activities ()* **

- Theory classes
- Laboratory session 1: data acquisition and interpretation

Module 3: Sonic and ultrasonic tests

Dedication: 17 hours

- Large group: 3 hours
- Small group: 4 hours
- Autonomous learning: 10 hours

Description

- Physical principles
- Applications and limits
- Methodology
- Data interpretation

**Related activities ()* **

- Theory classes
- Data interpretation and applications

Module 4: Acoustic emission

Dedication: 18 hours

- Large group: 4 hours
- Small group: 4 hours
Module 5: Ground penetrating radar

<table>
<thead>
<tr>
<th>Related activities (*)</th>
<th>Theory classes</th>
</tr>
</thead>
</table>

Dedication: 18 hours
- Large group: 4 hours
- Small group: 4 hours
- Autonomous learning: 10 hours

Module 6: Other techniques

<table>
<thead>
<tr>
<th>Related activities (*)</th>
<th>Theory classes</th>
</tr>
</thead>
</table>

Dedication: 12 hours
- Large group: 4 hours
- Small group: 4 hours
- Autonomous learning: 4 hours

Module 7: Integrated studies

<table>
<thead>
<tr>
<th>Related activities (*)</th>
<th>Data acquisition and integrated interpretation</th>
</tr>
</thead>
</table>

Dedication: 20 hours
- Large group: 4 hours
- Small group: 6 hours
- Autonomous learning: 10 hours

Activities

Activity 1: Planning and field data acquisition (part of the final work)

<table>
<thead>
<tr>
<th>Related activities (*)</th>
<th>Select a case study</th>
</tr>
</thead>
</table>

Dedication: 14 hours
- Large group: 2 hours
- Small group: 6 hours
- Autonomous learning: 12 hours

Description
- The students will select a case study and prepare a survey considering limits and advantages

Related activities (*)
- Select a case study
- Preparing a survey using combined methodologies
- Evaluate limits and advantages of each technique considering the problem and the case study
- Organizing the survey
- Data acquisition

Activity 2: Data processing, analysis and interpretation (part of the final work)

<table>
<thead>
<tr>
<th>Related activities (*)</th>
<th>Visualize field data</th>
</tr>
</thead>
</table>

Dedication: 16 hours
- Large group: 2 hours
- Small group: 6 hours
- Autonomous learning: 14 hours

Description
- The student will work with field data: visualization, processing, evaluation of boundary conditions, data analysis and combined interpretation

Related activities (*)
- Visualize field data
- Data processing (application of different filters, gains, 3D interpolation, …)
- Data interpretation considering separately the techniques

Activity 3: Combined interpretation (part of the final work)

<table>
<thead>
<tr>
<th>Description</th>
<th>Dedication: 17 hours</th>
<th>Large group: 3 hours</th>
<th>Small group:</th>
<th>Autonomous learning: 14 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final data interpretation and report presentation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Related activities (*)&
- Description of limits, advantages and applications of each technique
- Combination of the different data interpretations, evaluating the differences between techniques and the possible complementary data.
- Final report
- Presentation of the final report and results

Grading system (assessment)

- a) 2 partial exams with a weight of 15% each exam (30% the two exams)
- b) Laboratory sessions with a weight of 10% each session (30% the three sessions)
- c) Final project document (30%)
- d) Presentation of the final project (10%)

Teaching methodology

- a) Theoretical session
- b) Laboratory sessions
- c) Project development

References

Basic

Complementary
- Ground Penetrating Radar (2004) D.J. Daniels. Institute of Electrical Engineers