

General description

Name of the course: Computational Methods in Science and Engineering

Department: Fluid Mechanics

ECTS: 6 ETS

Degree: MASTER'S DEGREE IN RESEARCH IN MECHANICAL ENGINEERING

Level:

Language: English

Code: 295801

Type: Elective

Lecturers

Main teacher: Lluis Jofre Cruanyes

Others: -

General learning objectives of the course

Learn to identify problems whose solutions require computational approaches, understand the mathematical concepts and ideas behind the methods utilized, implement the corresponding methods using well-established programming languages, conduct thorough error analysis of the algorithms, including accuracy and stability, and acquire expertise on the discrete solution and optimization of differential equations describing multiphysics problems in science and engineering.

Competences

Specific competencies	Acquisition of analysis and problem solving skills: computational modeling, algorithm design and development, distributed computing, contemporary programming tools, data-based approaches
Generic competencies	Collaboration, team building and management of computational-based projects: technology evaluation and selection, technical writing, cost/benefit analysis, project estimation techniques

Credits: total hours of student work

			Dedication	
		-	Hours	%
Directed learning	Large Group (G)		75	50%
	Medium Group (M)		0	0%
	Small Group (S)		30	20%
Autonomous learning			45	30%

Modules

Module 1: Fundamentals		Dedication: 35 hours	Large group: 17.5 hours
			Small group: 7 hours
			Autonomous learning: 10 hours
Description	Numerical interp	olation, differentiation, inte	gration, PDE classification
Related activities (*)	Activity 1		

Module 2: Spatial Discretization		Dedication: 35 hours	Large group: 17.5 hours
			Small group: 7 hours
			Autonomous learning: 10 hours
Description Discretization me		ethods, the Riemann Probl	em, hyperbolic systems
Related activities (*) Activity 2			

Module 3: Time-Stepping		Dedication: 35 hours	Large group: 17.5 hours
			Small group: 7 hours
			Autonomous learning: 10 hours
Description	Explicit and impl	icit time schemes and solve	ers
Related activities (*)	Activity 2		

Module 4: Initial & Boundary Conditions		Dedication: 10 hours	Large group: 5 hours
			Small group: 2 hours
			Autonomous learning: 5 hours
Description Description of in		itial and (main) boundary c	onditions
Related activities (*) Activity 2			

Module 5: Parallel Computing		Dedication: 35 hours	Large group: 17.5 hours
			Small group: 7 hours
			Autonomous learning: 10 hours
Description	Computer memo	ory architectures, parallel p	rogramming models and algorithms
Related activities (*)	Activity 3		

Activities

Activity 1: Fundamentals		Dedication: 15 hours	
Description	Linear advection	, Burgers equation, linear of	l

Activity 2: Computational Solv	/er	Dedication: 15 hours	
Description	Development of	a 1-D Navier-Stokes solve	r

Activity 3: Parallelization		Dedication: 15 hours	
Description	Parallelization of	the 1-D Navier-Stokes sol	ver

Grading system (assessment)

Activities	30%
Project	40%
Final Exam	30%

Teaching methodology The teaching methodology is based on a combination of theoretical classes, hands-on exercises, deliverable activities, a course project, and a final exam.

References

Basic	[-] Fundamentals of Engineering Numerical Analysis (P. Moin, CUP)
	[-] Computational Fluid Dynamics – An Open Source Approach (Vermeire et al., Concordia
	University)
	[-] Introduction to High Performance Computing for Scientists and Engineers (Chapman &
	Hall, CRC Press)
Complementary	[-] Numerical Recipes in C++ (Press et al., CUP)
	[-] Fluid Mechanics (F. M. White, McGraw Hill)
	[-] Turbulent Flows (S. B. Pope, CUP)
	[-] Boundary-Layer Theory (H. Schlichting & K. Gersten, Springer)
	[-] Riemann Solvers and Numerical Methods for Fluid Dynamics (E. F. Toro, Springer)