

GUIA PENDENT D'APROVACIÓ

General description

Name	or the	course:	Advanced	Fluid	Mechanics

Department: **729** ECTS: **3 ECTS**

Degree: Greti/Greta/Greva

Level:

Language: English

Code: 205237

Type: Elective

Lecturers

Main teacher: Robert Castilla

Others: -

General learning objectives of the course

Competencies

Specific competencies	
Generic competencies	

Credits: total hours of student work

		De	edication
		Hours	%
Directed learning	Large Group (G)	30	
Autonomous learning		45	

GUIA PENDENT D'APROVACIÓ

Modules

Module 1: Micro and Nano fluids		Dedication: 15 hours	Small group: 6 hours Autonomous learning: 9 hours
Description 1.1 Introduction			
	1.2 Shear-Driver	n flows	
	1.3 Pressure-Dri	iven flows	
1.4 Surface-Tens		sion Driven flows	
Related activities (*)	Assignment 1		

Module 2: Rheology		Dedication: 15 hours	Small group: 6 hours Autonomous learning: 9 hours
Description	2.1 Classification	n of fluids	
	2.2 Generalised	Newtonian Fluid	
	2.3 Viscoelastic	fluids	
Related activities (*)	Assignment 2		

Module 3: Turbulence		Dedication: 15 hours	Small group: 6 hours Autonomous learning: 9 hours
Description	3.1 Statistical de 3.2 Scales of Tu 3.3 Wall flows	scription of turbulence rbulent flow	
Related activities (*)	Assignment 3		

Module 4: Boundary Layer	Dedication: 15 hours	Small group: 6 hours Autonomous learning: 9 hours
Description	4.1 Laminar boundary layer	
	4.2 Turbulent boundary layer	
	4.3 Control of boundary layer	
Related activities (*)	Assignment 4	

Module 5: Fluid Flow in Porous Media		Dedication: 15 hours	Small group: 6 hours
			Autonomous learning: 9 hours
Description 5.1- Introduction		to flow in porous media	
	5.2 Darcy's law	1	
5.3 Mathematic		cal description of flow in po	rous media and basic examples
Related activities (*)	Assignment 5		

Grading system (assessment)

The final grade will be the average of the 5 assignments grades.

Teaching methodology

The course is developed through lectures including theoretical sessions imparted with the aid of notes, slides and more applicative and more visual sessions with videos and simulations. Practical cases and assignment will be discussed in class as well.

GUIA PENDENT D'APROVACIÓ

References

Basic	Kundu, Pijush K.; Cohen, Ira M.; Dowling, David R. Fluid mechanics [en línia]. 5th ed. Amsterdam
	Rudyak, V., Aniskin, V.M., Maslov, A.A., Minakov, A.V., Mironov, S.G.(2018) Micro- and Nanoflows. Springer
	Karniadakis, G., Beskok, A., & Aluru, N. (2006). Microflows and nanoflows: fundamentals and simulation (Vol. 29). Springer Science & Business Media.
	Ilrgens, F. (2014). Rheology and non-newtonian fluids. New York: Springer International Publishing.
	Turbulent Flows, by Stephen B. Pope, Cambridge University Press, 2000
	Engineering Fluid Mechanics , H. Song, Springer Nature, 2018
	Modeling Transport Phenomena in Porous Media with Applications, Das et al., Springer Nature, 2018
Complementary	Schlichting, H., & Gersten, K. (2016). Boundary-layer theory. Springer.