

GUIA PENDENT D'APROVACIÓ

General description

Name of the course: Introduction to Cubesats

Department: 710 ECTS: **3 ECTS**

Degree: ETI/ETA/EVA/ELO/MEC

Level: ?????

Language: English

Code: **205234**

Type: Elective

Lecturers

Main teacher: David Gonzalez Diez

Others: Javier Gago Barrio

General learning objectives of the course

Competencies

Specific competencies	
Generic competencies	

Credits: total hours of student work

		Dedication	
		Hours	%
Directed learning	Large Group (G)	27	36%
Autonomous learning		48	64%

GUIA PENDENT D'APROVACIÓ

Modules

Module 1: Overview		Dedication: 2 hours	Large group: 2 hours
			Autonomous learning: 1 hours
Description	Introduction to Cubesats and "New Space Era" scenario. Review of Cubesats		
	history, companies, commercial products available, launchers, deployers,		
	missions, etc.		
Related activities (*)	Lectures		

Module 2: Electric Power System		Dedication: 5 hours	Large group: 5 hours Autonomous learning: 10 hours
Description	Description of th	 EPS general architecture	•
Description	Description of the EPS general architecture and its main components: PV arrays, batteries, DC/DC power converters and MPPT algorithms.		
Related activities (*)	Lectures, computer simulations, lab sessions		

Module 3: Attitude Control System		Dedication: 10 hours	Large group: 10 hours
			Autonomous learning: 20 hours
Description	Description of the ACS, control algorithms and actuators (magnetorquers and reaction wheels)		
Related activities (*)	Lectures, computer simulations, lab sessions		

Module 4: Communications		Dedication: 5 hours	Large group: 5 hours Autonomous learning: 10 hours
Description	•		its main components Spacecraft-Ground Station
Related activities (*)	Lectures, compu	uter simulations, lab sessio	ns

Module 5: Final presentations	& discussion	Dedication: 5 hours	Large group: 5 hours Autonomous learning: 7 hours
Description	Presentation & discussion of all results obtained during the course. We will foster the active participation of all students in the open discussion of the topics		<u> </u>
Related activities (*)	Public presentat	ions	

Grading system (assessment)

The assessment is based on the delivery of three tasks and a final presentation summarizing all the work developed during the subject.

Assignment 1: 20% Assignment 2: 20% Assignment 3: 35% Final presentation: 15%

Teaching methodology

The teaching methodology is based on three kind of activities:

- Theoretical lectures, where lecturers will deliver

GUIA PENDENT D'APROVACIÓ

- Practical sessions, where students will develop, alone or in a group, some assignments. These sessions can be held in the laboratory, depending on the topic of the assignment. It will consist of some hardware development, test procedures, modelling, etc.
- Presentation and discussion, where students will present and discuss their results in front of his fellows and lecturers.

MATLAB/Simulink will be used as main simulation tool.

References

Basic	"Spacecraft System Engineering", P. Fortescue et al. Ed. Wiley. 2011
Complementary	"Cubesat Design Specification", Rev.13. California Polytechnic State University. "Cubesat Standards Handbook", 2017. http://librecube.net